
 

 
The Kauffman Bracket Skein as an Algebra of Observables
Author(s): Doug Bullock, Charles Frohman and  Joanna Kania-Bartoszyńska
Source: Proceedings of the American Mathematical Society, Vol. 130, No. 8 (Aug., 2002), pp.
2479-2485
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2699487
Accessed: 01-05-2018 22:47 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend
access to Proceedings of the American Mathematical Society

This content downloaded from 132.178.6.146 on Tue, 01 May 2018 22:47:19 UTC
All use subject to http://about.jstor.org/terms



 PROCEEDINGS OF THE

 AMERICAN MATHEMATICAL SOCIETY
 Volume 130, Number 8, Pages 2479-2485
 S 0002-9939(02)06323-2

 Article electronically published on February 12, 2002

 THE KAUFFMAN BRACKET SKEIN

 AS AN ALGEBRA OF OBSERVABLES

 DOUG BULLOCK, CHARLES FROHMAN, AND JOANNA KANIA-BARTOSZYNSKA

 (Communicated by Ronald A. Fintushel)

 ABSTRACT. We prove that the Kauffman bracket skein algebra of a cylinder

 over a surface with boundary, defined over complex numbers, is isomorphic to

 the observables of an appropriate lattice gauge field theory.

 1. INTRODUCTION

 Lattice gauge field theory brings the representation theory of an underlying man-
 ifold and its quantum invariants into the same setting. Consider the case of a

 cylinder over a compact, oriented surface with boundary. A lattice model of the

 surface determines an algebra of gauge invariant fields (i.e. observables). In the
 classical case, based on a connected, simply connected Lie group G, observables are

 the characters of the fundamental group of the lattice represented in G. Wilson
 loops can be understood as traces of conjugacy classes in the fundamental group of

 the lattice. For the theory based on a Drinfeld-Jimbo deformation of a simple Lie

 algebra g, the observables are a deformation quantization of the G-characters of the
 surface with respect to the standard Poisson structure [2]. In the case of Uh(812)
 this, together with the classical isomorphism [1, 6], allowed us to prove that the al-
 gebra of observables is the Kauffman bracket skein algebra of the surface, completed
 as an algebra over formal power series.

 In this paper we return to an analytic setting in which the deformation parameter
 is any complex number other than a root of unity. The analogous theorem relating

 observables and the Kauffman bracket skein algebra is again true. The proof is
 based on the combinatorial equivalence between the Temperley-Lieb algebra and
 the quantized invariant theory of SL2; it does not explicitly use the relationship
 with surface characters.

 The paper is organized as follows. Section 2 recalls definitions and associated

 formulas of the Kauffman bracket skein algebra. Section 3 summarizes, for the
 generic parameter, the construction of a quasi-triangular matrix model of quantum
 SL2. Section 4 outlines basic definitions and constructions of lattice gauge field
 theory. Section 5 describes the correspondence between skeins and intertwiners in

 the Verlinde algebra for quantum SL2. Finally, Section 6 contains a proof of the
 main theorem.
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 2. KAUFFMAN BRACKET SKEIN ALGEBRA

 Let t be a complex number that is neither 0 nor a root of unity. Suppose that F

 is a compact, oriented surface with boundary and I is a closed interval. Denote by

 L: the set of isotopy classes of framed links in F x I, including the empty link. Let

 CL be the vector space with basis L. Define St to be the subspace of CL spanned

 by all expressions of the form X/-t t- ( and O+t2+t-2, where the framed
 links in each expression are identical outside the balls pictured in the diagrams.

 The Kauffman bracket skein algebra Kt (F x I) is the quotient Kt (F x I)
 CL/St. Multiplication is given by laying one link over the other. More precisely,
 if ae and 3 are in L, isotop them so that a lies in F x [0, 2), and : in F x (2, 1].
 Then ae * is the union of these two links in F x [0,1]. Extend linearly to a product

 on CL. Since St is an ideal, the product descends, making the skein module into a

 skein algebra. Since the algebra structure depends on the specific product structure

 of F x I, rather than its topological type, we use the notation Kt(F).
 We use the standard convention of modeling a skein in Kt(F) on a framed,

 admissibly colored, trivalent graph. An admissible coloring is an assignment of a

 nonnegative integer to each edge so that the colors at each vertex form admissible

 triples. A triple (a, b, c) is admissible if a < b + c, b < a + c, c < a + b and a + b + c is

 even. The corresponding skein in Kt(F) is obtained by replacing each edge labeled

 with the letter m by the m-th Jones-Wenzl idempotent (see [7], or [5, p. 1361),
 and replacing trivalent vertices with Kauffinan triads (see [5, Fig. 14.7]). If s is
 a trivalent spine of F, then the set of skeins carried by admissible colorings of s

 forms a basis l3 for Kt (F). If F is an annulus, B1 consists of skeins obtained by
 labeling the core with a Jones-Wenzl idempotent. One may think of the core as

 a "trivalent" spine with one vertex, whose admissible labels are {(n, n, 0)}. The

 space Kt,(F) also has a basis 32 consisting of all links with simple diagrams on F,
 i.e. with no crossings and no trivial components.

 3. REPRESENTATIONS

 The details of the following can be found in [3]. Let A,t be the unital Hopf algebra
 on X, Y, K, K-1, with relations:

 KX = t2XK, KY t-2YK)

 XY-YX= 2 KK-1 1.

 Let m denote the irreducible (m + 1)-dimensional representation of A,t. Fixing an
 ordered basis for m we define linear functionals icn: At -> C to be the coefficient
 in the i-th row and j-th column in the representation m. The C' form a basis for

 the stable subalgebra qSL2 of the Hopf algebra dual A'. (Here q = t4.) Define
 00

 A4t fJ Mm+, (C)
 m=0

 and give it the product topology. A typical element of A,t is a sequence of arbitrarily
 chosen matrices in which the i-th term is an (i + 1) x (i + 1) matrix.

 Let Pm : At -> Mm+?((C) be the homomorphism corresponding to the represen-
 tation m. The homomorphism

 (1) 0 At>t,
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 KAUFFMAN BRACKET SKEIN 2481

 given by () (Z) = (Po(Z), PI (Z), P2(Z),. . ), is injective and its image is dense in At
 (see [3]). The algebra At is the completion of At by equivalence classes of Cauchy
 sequences in the weak topology from qSL2. It has the structure of a topological
 ribbon Hopf algebra. The projection of At onto its (m+1)-st factor is an irreducible

 representation of At, also denoted by m. Composing mc7 with this projection yields

 a function on At, also called 'c. Thus qSL2 is understood to lie in (At)0.

 4. LATTICE GAUGE FIELD THEORY

 In this section we recall basic definitions and constructions of lattice gauge field
 theory. Details can be found in [21.

 Let F be an oriented, ciliated graph; i.e. the edges are oriented and the vertices
 carry a linear ordering of the adjacent edges. One can think of this as instructions
 for building a strip and disk model of an oriented surface F having F as a strong
 deformation retract. Vertices correspond to the disks, edges to strips, and the
 ciliation determines how to glue the strips to the disks. The surface F is called the
 envelope of r. Define a space of connections

 A(F) (0 (At)e,
 edges e

 and define an algebra of fields

 C[A(F)1 - 80 (qSL2)e.
 edges e

 Note that fields are functions on connections in the obvious way. The connections
 form a coalgebra with comultiplication as defined in [2]. Multiplication of fields is
 the convolution product dual to comultiplication of connections. There is an action
 of the gauge algebra,

 ()= (8) (At) v
 vertices v

 on the space of connections, and adjointly on fields. The invariant part of the
 gauge fields under this action is called the observables, 0(F). The multiplication
 of fields restricts to make 0(F) into an algebra, which is a deformation of the
 SL2 (C)-characters of wi (F).

 Let V be a representation of the Hopf algebra At, that is, V is a finite dimensional
 left module over At.

 The dual vector space to V carries two distinct At-module structures. When At
 acts on the left, the dual module is denoted by V*. The action is

 Z 0(v) - =(S(Z) . v)

 for any Z c At, v c V and 0 in the dual vector space to V. When At acts on the
 right, denote the dual by V' with

 X(v) . Z= 9(Z. v).
 There is an alternate description of observables in terms of "colorings" of the

 lattice. Assigning a representation Ve to each positively oriented edge e of the
 lattice 1 determines a map

 A (IF) (Ve* (0 Ve).
 e)
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 This yields, at each vertex, a tensor product of representations coming from the

 edges adjoining that vertex taken in the order given by the ciliation. Use the

 representation Ve for the edges e starting at a vertex and the dual V* for the edges

 terminating there. The resulting representation at a vertex v is denoted by Vv.

 Finally, choose Xv C Inv(Vv) for each vertex v. The element 0(Ov() is evaluated
 on a connection (0,e Xe by mapping (0,e Xe to 0e(Ve* 0 Ve) and then re-parsing to
 an element of 0& Vv. By [2, Corollary 1] every observable is a linear combination
 of observables of this form.

 Now assume that F is a trivalent lattice colored by irreducible representations.

 The coloring is admissible if, at each vertex, the integers corresponding to the

 colorings of the incident edges form an admissible triple.

 Proposition 1. Suppose that 17 is an admissibly colored trivalent lattice. For each

 Vv there exists a non-zero dual element invariant under the right action of At. The
 tensor product of these invariants over all vertices defines an observable.

 The set of such observables, one for each admissible coloring, is a basis for 0(1).

 Proof. Let c = {me I e is an edge of F} be an admissible coloring. Note that
 admissibility implies a 1-dimensional invariant subspace in each Vv. Hence there is
 a non-zero observable o, = 0 XV Since o, is nonzero, there exists Xc C (v Vv so
 that o,(xc) # 0.

 Let P: 0 v & ' 0e (m*T X me) be the "parsing" map. Let tm be the map

 m* 0Xrn Mm+, (?C) > I| Mn (C) = iAt
 n

 where the inclusion is given by forming a sequence that has all zero matrices except

 for the (m + 1)-st entry corresponding to m.

 Define xc to be the connection (0e tmie) (P(X,)). Clearly o,(x,) :4 0. Since
 Pm tln = 0 unless m = n, xc is annihilated by all observables constructed from
 colorings different than c.

 FRom this we conclude that any set of observables constructed from distinct
 colorings is independent. By [21 they span. D

 There is a map

 (2) d): Kt(F) - >(F)

 that assigns to each framed link a Wilson operator. Classically, a Wilson operator is
 the trace of the holonomy of a connection along some fixed loop. The construction

 in the quantum setting is described in [2]. In a theory based on the Drinfeld-
 Jimbo Uh(812) and its Hopf algebra dual, the observables are isomorphic to the

 Kauffman bracket skein algebra of the lattice envelope. Since Uh(Sl2) is a complete
 topological algebra over C[[h]], it was necessary to complete the skein algebra as
 well. The isomorphism was inferred from the classical isomorphism, the agreement

 of Poisson brackets, and the h-adic completion. In Section 6 we will show directly
 that the map d) is an isomorphism.

 5. TEMPERLEY-LIEB THEORY

 In this section we recall the correspondence between skeins and intertwiners in

 the category of representations m of At.
 Consider a rectangle R = I x I with 2n distinguished points: n of them on

 I x {O} and n on I x {1}. Take the space of blackboard framed tangles with n
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 arc components ending at the distinguished points. Its quotient by the Kauffman
 bracket skein relations is denoted by Kt (R, n). This quotient has an algebra struc-
 ture given by placing the bottom of a rectangle on the top of another in such a way
 that the distinguished points meet.

 Fact 1. The algebra Kt(R, n) is isomorphic to End- (l?n), the space of At-linear
 maps of 1lon to itself.

 In the basis {el/2, el/2} of 1, the isomorphism is given by a tangle functor
 which makes the following assignments. A local maximum is sent to the morphism
 ,u 1 0 1 -> 0 defined by

 (3) P1(el/2 0 el/2) = it, P(e-1/2 0 e1/2) =-it-

 AL(e_1/2 0 e_1/2) = A(el/2 0 e1/2) O.

 A local minimum is associated to the morphism r : 0 -> 1 0 1 given by

 'q(1) = itel/2 0 e-1/2 - 1e-1/2 0 e-/2-
 Fact 2. The isomorphism takes the n-th Jones- Wenzl idempotent to the intertwiner
 that projects 1??n onto its highest weight invariant subspace.

 Let H= {(x, y) I y > 0} be the closed upper half plane. For any n, choose 2n
 distinguished points on the x-axis, {(1, 2, .. ., 2n)}, and form a space of blackboard-
 framed tangles with n arc components ending at the distinguished points. The
 quotient of this space by the Kauffman bracket skein relations is denoted Kt (IHI, 2n).

 Fact 3. Kt (IHI, 2n) _ Inv (((1 X 1)?)n).

 The isomorphism is given by the same tangle functor as for Fact 1.
 An admissible triple (im, n, p) determines a skein in Kt (HI,m + n +p) consisting of

 a Kauffman triad with all three legs attached to the x-axis. Fact 2 gives a canonical
 inclusion of Tn 0 n r, p into lOm 0 l?n 0 Ilop - (10 1)?(m+n+p)/2.

 Fact 4. An admissible triple (mn, , p) equivalently, a Kauffman triad corre-
 sponds to a nonzero vector in the 1-dimensional space Inv((m 0 n 0 p)').

 6. OBSERVABLES AND THE KAUFFMAN BRACKET SKEIN ALGEBRA

 Our goal is to prove a theorem analogous to [2, Theorem 10], but replacing power
 series by complex numbers.

 Theorem 1. Let 1 be a lattice and let F be its envelope. Assume that t c C \ {0}
 is not a root of unity. The algebra of observables of lattice gauge field theory on 1
 based on (At, qSL2) is isomorphic to Kt(F).

 Proof. From [2] we have an algebra map from CL to 0(17) taking a link to the
 corresponding Wilson operator. As in [2, Theorem 10] this map descends to {D
 Kt(F) -->O(F).

 The following description of {D is implicit in [2]. Since 0(17) is a homeomorphism
 invariant of F, we can assume that the lattice 1 comes from giving orientation and
 ciliation to a trivalent spine -y of F. Let L be an element of the basis B32 of Kt (F)
 (i.e., a link with a simple diagram). Choose an orientation of L. To compute the
 image of L under d>, first perform the composition

 (4) At > X m(e) eP ( ) e(l* 1)(e(e)
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 +( x) +(K2x)

 FIGURE 1. Cap tangles

 Here n(e) is the number of strands of L running along the edge c of 1, and A means
 comultiplying n(c) - 1 times in the factor corresponding to e.

 Second, in each factor where the corresponding segment of L runs against the
 orientation of the edge of 1, apply iD 0 iD- 1* 01 1 1*. Here, the morphism
 D: 1* 1 is defined by

 (5) D (e/2) ite-l/2, D (e-1/2) -it-le/2.

 Third, treat each ciliated vertex as a half plane with the cilium at infinity. Up to
 isotopy, the link L now appears as a collection of oriented caps in each half plane.
 The cap pictured on the left of Figure 1 is associated with the map 1* 0 1 -- C

 where 0 x v- qO(x), and 1 1* - C is given by x0qD X q- >(K2x) for the cap on
 the right.

 Finally, to obtain @(L), multiply the result by (_i)ILI, where ILI denotes the
 number of components of L.

 Notice that p1 sends the switch map of [2] to the map iD 0 iD-1 and sends
 multiplications to contractions. Hence our description of @P (L) for L c 32 coincides
 with the Wilson operator. It follows from [2] that d) does not depend on the choice
 of orientation of L. Extend it linearly to all of Kt(F). It is a homomorphism of
 algebras Kt(F) and 0(1F). In order to prove that {D is an isomorphism we factor it
 into two maps which are isomorphisms on the level of vector spaces.

 The first map, expressed in the basis B2, is given by a diagonal matrix with l's
 and -l's on the diagonal. The second map,

 b: Kt (F) -->0(F():

 does not require a choice of orientation of a link L. To compute the image of
 L C 32 under {D. first perform the composition (4). Second, apply the map D to
 each copy of 1*. Third, treat each vertex as a half plane and associate the map [L
 from equation (3) to the (unoriented) caps.

 Checking all possible orientations of L and F shows that @(L) = ?tD,,(L).
 By Fact 4, the map {D. takes an element of the basis l31 (i.e., a skein obtained by

 an admissible coloring of ey) to an observable coming from coloring the edges of r
 with corresponding irreducible representations of At. Thus, by Proposition 1, the
 map {D. takes the basis B1 of Kt(F) to a basis of 0(17).

 As {D and D,, differ by a composition with an isomorphism, both maps are iso-
 morphisms. O
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THE YANG-MILLS MEASURE IN THE KAUFFMAN BRACKET
SKEIN MODULE

DOUG BULLOCK, CHARLES FROHMAN, AND JOANNA KANIA-BARTOSZYŃSKA

Abstract. For each closed, orientable surface Σg, we construct a local, diffeomor-
phism invariant trace on the Kauffman bracket skein module Kt(Σg × I). The trace
is defined when |t| is neither 0 nor 1, and at certain roots of unity. At t = −1, the
trace is integration against the symplectic measure on the SU(2) character variety
of the fundamental group of Σg.

1. Introduction

Since the introduction of quantum invariants of 3-manifolds [20, 25] the fact that they
are only defined at roots of unity has been an obstruction to analyzing their proper-
ties. One approach has been to study the perturbative theory of quantum invariants
[17]. However, there is ample evidence quantum invariants of three manifolds exist
as holomorphic functions on the unit disk, that diverge everywhere on the unit circle
but at roots of unity [14]. This paper takes a step towards seeing that this holds in
general. The Yang-Mills measure is the path integral on a topological quantization [3]
of the SU(2)-characters of the fundamental group of a closed surface. The measure
displays the same convergence properties as are expected of quantum invariants of
3-manifolds.

The Yang-Mills measure in the Kauffman bracket skein algebra of a cylinder over a
closed surface Σg is a local, diffeomorphism invariant trace. It quantizes the sym-
plectic measure on the space M(Σg) of conjugacy classes of representations of the
fundamental group of Σg into SU(2). The definition of the symplectic structure and
formulas for its computation are in [10, 11]. The volume of M(Σg) was computed by
Witten in [26] in two ways: via the equivalence of two computations in quantum field
theory, and by noting that the symplectic measure is equal to the measure coming
from Reidemeister torsion. In Witten’s setting the Yang-Mills measure is a path inte-
gral in a lattice model of field theory that depends on area. Forman [7] gave a direct
proof that Witten’s measure converges to the symplectic measure as the area goes to
zero.

Alekseev, Grosse and Schomerus [1] conceived of a method of constructing lattice
gauge field theory based on a quantum group. This idea was further developed by
Buffenoir and Roche [6] who gave a construction of the algebra, its Wilson loops and
a trace called the Yang-Mills measure that were completely analogous to Witten’s
construction. Their theory is topological when the area is set to zero.

This research was partially supported by NSF-DMS-9803233 and NSF-DMS-9971905.
1
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The method of constructing the algebras in [1, 6] is combinatorial and based on
generators and relations. We gave a new construction of lattice gauge field theory in
[4] that is “coordinate free”. The connections form a co-algebra and the product on
the gauge fields is a convolution with respect to the co-multiplication of connections.
This allows the structure of the observables to be elucidated. We found working
over formal power series, basing the theory on quantum sl2, that the observables are
the Kauffman bracket skein algebra of a cylinder over a regular neighborhood of the
1-skeleton. In [5] we recover the same result working over the complex numbers.

These considerations lead one to expect that the Yang-Mills measure exists as a trace
on the Kauffman bracket skein algebra of a closed surface. In this paper we affirm this
fact, with the only reservation that if the deformation parameter t is a generic point
on the unit circle, then the measure does not converge. However, at roots of unity
the trace exists and is well known. Furthermore, at t = −1 the Yang-Mills measure
is the symplectic measure on M(Σg).

This paper is organized as follows. Section 2 recalls definitions, associated formulas
and the algebra structure of the Kauffman bracket skein module of a cylinder over
a surface. In section 3 the Yang-Mills measure is defined for compact surfaces with
boundary, and is proved to be a trace. In section 4, working with the parameter t such
that |t| 6= 1, we obtain estimates for the absolute value of the tetrahedral coefficients
and use these to show that the Yang-Mills measure can be defined for closed surfaces.
In section 5 we define and investigate the measure when t is a root of unity.

2. Preliminaries

Let M be an orientable 3-manifold. A framed link in M is an embedding of a disjoint
union of annuli into M . Framed links are depicted by showing the core of an annulus
lying parallel to the plane of the paper (i.e. with blackboard framing). Two framed
links in M are equivalent if there is an isotopy of M taking one to the other. Let
L denote the set of equivalence classes of framed links in M , including the empty
link. Fix a complex number t 6= 0. Consider the vector space CL with basis L.
Define S(M) to be the smallest subspace of CL containing all expressions of the form

− t − t−1 and ©+ t2+ t−2, where the framed links in each expression are
identical outside balls pictured in the diagrams. The Kauffman bracket skein module
Kt(M) is the quotient

CL/S(M).

Let F be a compact orientable surface and let I = [0, 1]. There is an algebra structure
on Kt(F × I) that comes from laying one link over the other. Suppose that α, β ∈
Kt(F × I) are skeins represented by links Lα and Lβ . After isotopic deformations, to
“raise” the first link and “lower” the second, Lα ⊂ F × (1

2
, 1] and Lβ ⊂ F × [0, 1

2
).

The skein α ∗ β is represented by Lα ∪ Lβ. This product extends to a product on
Kt(F × I). We denote the resulting algebra by Kt(F ) to emphasize that it comes
from viewing the underlying three manifold as a cylinder over F .
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The notation and the formulas in this paper are taken from [13]. However, the variable
t replaces A, and we use quantum integers

[n] =
t2n − t−2n

t2 − t−2
.

When t = ±1, [n] = n. Note that ∆n from [13] is equal to (−1)n[n+ 1].

There is a standard convention for modeling a skein in Kt(M) on a framed trivalent
graph Γ ⊂ M . When Γ is represented by a diagram we assume blackboard framing.
An admissible coloring of Γ is an assignment of a nonnegative integer to each edge
so that the colors at trivalent vertices form admissible triples (defined below). The
corresponding skein in Kt(M) is obtained by replacing each edge labeled with the
letter m by the m-th Jones–Wenzl idempotent (see [24], or [15], p.136), and replacing
trivalent vertices with Kauffman triads (see [15, Fig. 14.7]).

Recall the fusion identity:

a b

=
∑

c

(−1)c
[c+ 1]

θ(a, b, c)
c

a b

a b

where the sum is over all c so that the triples (a, b, c) are admissible, i.e. a+ b+ c is
even, a ≤ b + c, b ≤ a + c, and c ≤ a + b. Value of θ(a, b, c) is given by equation (4)
below. The fusion relation is satisfied in Kt(M) unless t is a root of unity other than
±1.

3. The Yang-Mills Measure in a Handlebody

Throughout this section we assume that t is not a root of unity. The first result is
well known and comes from Przytycki’s [18] construction of examples of torsion in
skein modules.

Lemma 1 (The Sphere Lemma). Let sc be a skein represented by coloring a triva-

lent framed graph in the manifold M . Suppose further that there is a sphere embedded

in M which intersects the underlying graph transversely in a single point in the inte-

rior of an edge, and the color of that edge is not zero. Then sc = 0.

Proof. Using the “light bulb trick” isotope the framed graph sc so that it is the
same graph, but the framing on the edge intersecting the sphere has been changed
by adding two kinks. Using the formula for eliminating a kink, notice that sc is a
nontrivial complex multiple of itself. Ergo, sc represents zero in Kt(M).

Consider now Kt(#gS
1 × S2), the Kauffman bracket skein module of the connected

sum of g copies of S1 × S2.

Proposition 1. The skein module Kt(#gS
1 × S2) is canonically isomorphic to C.

The isomorphism is given by writing each skein as a complex multiple of the empty

skein.
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Proof. This follows easily from theorems of Hoste and Przytycki [12, 18, 19]. In [12]
the Kauffman bracket skein module of S1 × S2 is computed over Z[t, t−1]. This along
with the results in [19] on the Kauffman bracket skein module of a connected sum
over rational functions in t, combined with the universal coefficient theorem stated in
[18], proves the desired result.

We outline the actual isomorphism with the complex numbers. Choose a system of
spheres in #gS

1×S2 that cut it down to a punctured ball. Given a skein in #gS
1×S2,

represent it as a linear combination of colored, framed, trivalent graphs intersecting
the spheres transversely in interior of edges, and so that each graph intersects any
sphere at most once. This is done by fusing multiple edges passing through the same
sphere. By the sphere lemma, we can assume the graphs miss the spheres. Now take
the Kauffman bracket of the skein in the punctured ball to write it as a complex
multiple of the empty skein.

Given a handlebody H of genus g its double is #gS
1×S2. There is a linear functional

YM : Kt(H) → C computed by taking the inclusion of H into #gS
1 × S2 followed

by taking the “ Kauffman bracket” as above. Let F be a compact, oriented surface
with boundary. Since F × I is a handlebody the linear functional

YM : Kt(F ) → C,

is defined. We call this the Yang-Mills measure.

Choose a trivalent spine of F . The admissible colorings of that spine form a basis for
Kt(F ). The skein modules of the disk and annulus are exceptions; the first is spanned
by the empty skein and the latter is described in Section 4. In terms of this basis the
Yang-Mills measure is just the coefficient of the skein coming from labeling all the
edges of the spine with 0.

Proposition 2. The Yang-Mills measure is a trace, that is

YM(α ∗ β) = YM(β ∗ α).
Furthermore, the trace is invariant under the action of the diffeomorphisms of F × I
on Kt(F ).

Proof. Let L be the link ∂F × {1/2}. The result of removing L from the double of
F × I is homeomorphic to the Cartesian product of the interior of F with a circle.
Given any skein in F × I we can represent it by a linear combination of framed links
that miss L. Hence, the Yang-Mills measure factors through the skein module of
F × S1. In F × S1 the skeins α ∗ β and β ∗ α are the same.

The group of diffeomorphisms of the handlebody F × I acts on Kt(F ) in the obvious
way. If f : F × I → F × I is a diffeomorphism then it can be extended to Df :
#gS

1×S2 → #gS
1×S2. Since the image of the empty skein under a diffeomorphism is

the empty skein, the action ofDf onKt(#gS
1×S2) is trivial. Therefore, YM(f(α)) =

YM(α).

The final commonly used property of the Yang-Mills measure is that it is local. Sup-
pose that k is a proper arc in F . Cut F along k to get a surface F ′. It is evident
that if we write a skein α as a linear combination of admissibly colored graphs, each
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one intersecting k transversely in at most a single point, then we can throw out any
graph such that the edge intersecting k carries a nonzero label. This yields a skein in
F ′, denoted by αk. Then YM(α) = YM(αk).

4. The Yang-Mills measure on a closed surface

Throughout this section assume that |t| 6= 1. In fact, we only work with 0 < t < 1.
However, it is evident that the same proofs are valid when 1 < t since the formulas
are symmetric in t and t−1. Finally, the arguments extend to the case where t is not
real by replacing the estimates for t ∈ R by estimates of the absolute value of t ∈ C.

Recall the Kauffman bracket skein algebra of a cylinder over an annulus A. The
central core of the annulus can be seen as a link by giving it the blackboard framing.
Let si be the skein in the annulus which is the result of plugging the i-th Jones-Wenzl
idempotent into the core. The skein module Kt(A) is the vector space with basis {si},
where i runs from zero to infinity. The product with respect to this basis is given by

si ∗ sj =
i+j
∑

q≥|i−j|,by 2’s

sq.(1)

Use the Yang-Mills measure on Kt(A) to define a pairing:

〈α, β〉 = YM(α ∗ β).(2)

The si form an orthonormal basis with respect to (2). This pairing identifies the linear
dual ofKt(A) with series of the form

∑

i αisi, where the αi are complex numbers. Note
that:

〈
∞
∑

i=0

αisi,

n
∑

j=0

βjsj〉 =
n

∑

i=0

αiβi.

Let Σg,1 denote the compact orientable surface of genus g with one boundary compo-
nent. There is a pairing,

Kt(A)⊗Kt(Σg,1) → Kt(Σg,1)

given by representing the skein in Kt(Σg,1) by a linear combination of links disjoint
from some collar of the boundary, and plugging the skein in Kt(A) into the collar.
The Yang-Mills measure can then be applied to give a pairing,

Kt(A)⊗Kt(Σg,1) → C.(3)

This means there is a well defined map,

Y : Kt(Σg,1) → Kt(A)
∗.

Topologize Kt(A) by giving it the weak topology from Y . That is a sequence σn ∈
Kt(A) is Cauchy if for every skein α ∈ Kt(Σg,1), the sequence of complex numbers
Y (α)(σn) is Cauchy. A linear functional on Kt(Σg,1) that comes from an element of
this completion via the pairing (3) is called a distribution. It is interesting to note
that the weak topology from Y on Kt(A) depends on the genus of the surface.
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a

b e

c

d
f

a
b

c

Figure 1. Tet and theta

If g > 1 there is a distribution onKt(Σg,1) which annihilates all “handle-slides” (Skeins
that are represented by the difference of two links such that one can be obtained from

the other by a slide across an imagined disk filling the boundary of Σg,1). This linear
functional descends to the skein module of the closed surface. Yang-Mills measure on a
closed surface is the result of evaluating this distribution followed by a normalization.

Let’s think about what a skein in Kt(A) would be like if it annihilated all handle-
slides. Begin by writing it as

∑

i αisi and solve for the αi. A simple computation
shows that if α0 is zero then all αi are zero. Normalize so that α0 = 1. Notice that
if our skein annihilates handle-slides then the skein s1 + [2]s0 must be annihilated.
Using the rules for multiplication (1) we see that the coefficient α1 is equal to −[2].
Continuing on this way we see that this skein has to be

∑

i

(−1)i[i+ 1]si,

which is of course not in Kt(A).

The first goal is to show that for g > 1 the sequence of partials sums
∑n

i=0(−1)i[i+1]si
is Cauchy in the weak topology from Y , and so defines a distribution.

The notation Tet

(

a b e
c d f

)

stands for the Kauffman bracket of the skein pictured in

Figure 1 on the left. The explicit formula is given in [13]. We also need the quantity
θ(a, b, c) which is the Kauffman bracket of the colored graph on the right in Figure 1.
In terms of quantum integers

θ(a, b, c) = (−1)
a+b+c

2

[a+b+c
2

+ 1]![a+b−c
2

]![ b+c−a
2

]![ c+a−b
2

]!

[a]![b]![c]!
.(4)

Another quantity, called a 6j symbol, is derived from the tetrahedral evaluation.
Specifically,

{

a b e
c d f

}

=

Tet

(

a b e
c d f

)

(−1)e[e+ 1]

θ(a, d, e)θ(c, b, e)
.(5)

The 6j symbols can be woven together to give a change of basis matrix for the White-
head move on graphs. As a consequence they satisfy an orthogonality equation:
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∑

e

{

a b e
c d f

}{

d a g
b c e

}

= δgf ,(6)

where δgf is the Kronecker delta.

The following proposition seems quite weak, but turns out to be a powerful tool for
gauging the convergence of series of Kauffman brackets.

Proposition 3.
∣

∣

∣

∣

Tet

(

a b e
c d f

)∣

∣

∣

∣

≤
√

θ(b, c, e)θ(a, d, e)θ(a, b, f)θ(c, d, f)

(−1)e+f [e+ 1][f + 1]

Proof. In order for all the triples at the vertices of a tetrahedron to be admissible ,
the parity of the sum of the entries in any two columns of

Tet

(

a b e
c d f

)

has to be the same. Use (5) to expand the formulas for the 6j symbols in the orthog-
onality relation (6), with g = f . The tetrahedral evaluations are equal and the signs
of the θ’s and the (−1)e+f cancel so that each term in the sum is positive. Hence
every term in the sum is less than 1. Fixing e and putting everything except for
the tetrahedral evaluations on the right hand side, and taking square roots yields the
desired result.

Corollary 1. There is a real valued function C(k1, k2, k3) so that

|Tet
(

i i i
k1 k2 k3

)

|
√

|θ(i, i, k1)θ(i, i, k2)θ(i, i, k3)|
(7)

is less than tiC(k1, k2, k3) whenever the graphs corresponding to the functions in the

formula are admissibly labeled.

Proof. Substitute into the inequality from Proposition 3 to get,
∣

∣

∣

∣

Tet

(

i i i
k1 k2 k3

)∣

∣

∣

∣

≤
√

θ(k1, k2, k3)θ(i, i, k1)θ(i, i, k2)θ(i, i, k3)

(−1)i+k3[k3 + 1][i+ 1]
.(8)

Shift
√

θ(i, i, k1)θ(i, i, k2)θ(i, i, k3) to the left hand side. Use the fact that 1
[i+1]

≤ t2i

to make the right hand side bigger. Finally, note that the remaining factor on the
right hand side is a function of k1, k2 and k3.

Theorem 1. The sequence
∑n

i=0(−1)i[i+ 1]si defines a distribution for g > 1. That
is, the limit

YMD(α) = lim
n→∞

YM(α ∗
n

∑

i=0

(−1)i[i+ 1]si)

exists and gives a well defined trace on Kt(Σg,1) when g > 1.
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Proof. Choose a trivalent spine for Σg,1 with 4g − 2 vertices and 6g − 3 edges. Basis
elements sc for Kt(Σg,1) correspond to labeling the edges admissibly with integers kj,
where j runs from 1 to 6g− 3. Let si denote the core of an annulus that runs parallel
to the boundary, labeled with the ith Jones-Wenzl idempotent. In order to compute
YM(sc ∗ si) place both skeins in the same diagram. Choose a system of arcs, each
intersecting this configuration transversely in three points, that isolate the vertices
from one another. The transverse points of intersection are labeled i, kj , i as you
traverse each arc. Fuse along these arcs, until the resulting graphs intersect each arc
in at most one point. Discard any term where the label on an edge intersecting an
arc is not zero. Given a vertex v, let (kv1, kv2, kv3) be the triple of colors appearing
there. The resulting answer is:

YM(sc ∗ si) =
6g−3
∏

j=1

1

θ(i, i, kj)

∏

v

Tet

(

i i i
kv1 kv2 kv3

)

.(9)

Each edge appears at exactly two vertices, so (9) can be written as a product of
4g − 2 factors like (7). By Corollary 1 the absolute value of YM(sc ∗ si) is less than
C(kj)t

i(4g−2), where C(kj) is a number depending only on the kj. The nth partial sum
for YMD(sc) is

n
∑

i=0

(−1)i[i+ 1]

6g−3
∏

j=1

1

θ(i, i, kj)

∏

v

Tet

(

i i i
kv1 kv2 kv3

)

.

Note that [i + 1] is less than (i + 1)t−2i. Hence the i-th summand is less than
(i + 1)(−1)iC(kj)t

i(4g−4). The ratio test implies that the sequence of partial sums
is absolutely convergent for 0 < t < 1.

Finally, YMD is a trace since the partial sums
∑n

i=0(−1)i[i+1]si can be seen as lying
in the center of Kt(Σg,1).

Theorem 2. YMD descends to give a well defined trace

YM : Kt(Σg) → C.

Proof. There is a homomorphism Kt(Σg,1) → Kt(Σg) induced by inclusion. The
surface Kt(Σg) is the result of adding a disk to the boundary of surface Kt(Σg,1). The
kernel of this homomorphism consists of all skeins that can be written as a linear
combination of handle-slides. The next step is to show that the linear functional
YMD annihilates all handle-slides. To this end we analyze the difference of the two
skeins in the annulus (relative to a pair of points in the boundary).

n
∑

i=0

(−1)i[i+ 1]













 i − i













(10)
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The analysis of the diagram (10) diagram is due to Lickorish, [15]. It is equal to:

(−1)n[n + 1]













n

n+1
−

n

n+1












.(11)

This diagram needs to be set in place. Using standard arguments as in [2] yields that
we only need to check handle-slides of the following form. Take a skein corresponding
to a colored spine, and separate one strand along an edge.

k

k − 1

k

Now slide the strand over the added disk, locally the diagram looks like:

k

k − 1

k

Multiplying each of the diagrams above by
∑n

i=0(−1)i[i+1]si, taking their difference,
and using the identity (10)=(11), we get a difference of two terms like the one below.
In the first one the label u = n and the label v = n+1, and in the second one u = n+1
and v = n.

k

k − 1

v

u u

k
u

Fusing to isolate the vertices of this diagram requires two more cross cuts than the
diagrams we have been working with up till now. We get the product of

(−1)n[n+ 1]
1

θ(u, k, u)θ(u, k − 1, v)
Tet

(

u u v
1 k − 1 k

)

Tet

(

u v u
1 k k − 1

)

(12)
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with the standard product,

6g−3
∏

j=1

1

θ(u, u, kj)

∏

v

Tet

(

u u u
kv1 kv2 kv3

)

.(13)

The product (13) is smaller than a global constant, depending on the kj , times tn(4g−2).
It remains to ascertain that the term (12) is not too large. Using the inequality from
Proposition 3 we get that, regardless of whether u = n and u = n + 1, or u = n + 1
and u = n, the absolute value of (12) is less than [n+2], which is a universal constant
times t−2n. As long as the genus of the surface is greater than 1, the full product goes
to zero as n goes to infinity. So, in the limit, all handle-slides are annihilated.

The case of a surface of genus 1 is slightly different. To get a convergent distribution
we need to divide the partial sum

∑n
i=0(−1)i[i + 1]si by n. The sequence is then

Cauchy and defines a distribution on Kt(T
2).

The algebra Kt(T
2) is very nice for working examples. If (p, q) is a pair of integers

that are relatively prime there is an obvious skein s(p,q) in Kt(T
2) corresponding to

the (p, q) curve on the torus . Define a family of skeins based on (p, q) by using
the following iterative scheme: s(p,q)0 = 2s(0,0), that is, twice the empty skein, and
s(p,q)1 = s(p,q). For d > 1 define:

s(p,q)d = s(p,q) ∗ s(p,q)d−1
− s(p,q)d−2

.

Finally, if d = gcd{p, q}, let
s(p,q) = s(p/d,q/d)d .

Using this notation the product in Kt(T
2) is given by

s(p,q) ∗ s(u,v) = t

∣

∣

∣

∣

∣

∣

p q
u v

∣

∣

∣

∣

∣

∣

s(p+u,q+v) + t
−

∣

∣

∣

∣

∣

∣

p q
u v

∣

∣

∣

∣

∣

∣

s(p−u,q−v).(14)

The formula (14) is proven in [8].

There is a map

µ : Kt(T
2) → C∅ ⊕ CH1(T

2;Z2)

introduced in [16]. Let

µ





∑

(p,q)

a(p,q)s(p,q)



 = a(0,0)∅+
∑

(p,q)6=(0,0)

a(p,q)[(p, q)],

where [(p, q)] is the Z2–homology class in H1(T
2;Z2) corresponding to d = gcd{p, q}

copies of a (p/d, q/d) curve on the torus. The map µ has as its kernel the submodule
of all commutators. Hence any linear functional on the five dimensional space that is
the image of µ is a trace. It is easy to check that there is a three dimensional family
of traces that are invariant under diffeomorphism. In this set up

YM





∑

(p,q)

a(p,q)s(p,q)



 = a(0,0).
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This is the same trace as the one induced from the inclusion of Kt(T
2) into the

non-commutative torus [8].

Towards uniqueness of the Yang-Mills measure, it should be normalized, just as the
symplectic measure on moduli space needs to be normalized. It should also be invari-
ant under diffeomorphism, and be local. Locality is made up by two rules. One for
cutting a surface along an arc and one for removing a point from a closed surface. If
we formalize our rules correctly, we get the following:

Theorem 3. The Yang-Mills measure is the unique, local, diffeomorphism invariant

trace on Kt(Σg) up to normalization.

5. Roots of Unity

Fusion no longer holds in Kt(M) when t is a root of unity. However, when t = e
πi
2r

then one can take a quotient, where an appropriate form of the fusion identity is
true. This can be done by setting any skein containing the (r − 1)-st Jones-Wenzl
idempotent equal to zero. The quotient is denoted Kr,f(M). The reduced skein is a
central object in the construction of quantum invariants of 3-manifolds [9, 21, 22].

The Yang-Mills measure on a surface with boundary is obtained the same way as for
other values of t. Since [r] = 0, the iterative procedure for finding a skein in the
annulus that annihilates handle-slides terminates, to yield

r−2
∑

i=0

(−1)i[i+ 1]©i .

There is an induced trace,

YM : Kr,f(Σg) → C,

constructed the same way as for other t except that there is no need to take a limit
because the formula is a finite sum.

Notice that Σg is the boundary of a handlebody Hg (it doesn’t make any difference
which one). There is an action of Kr,f(Σg) on Kr,f(Hg) given by gluing skeins in
Σg × I into a collar of the boundary of Hg. The action gives a map

φ : Kr,f(Σg) → End(Kr,f(Hg)).

As we are working at a root of unity, Kr,f(Hg) is a finite dimensional vector space.

Denote its dimension by d, and let ω = YM(∅) =
∑r−2

i=0
1

[i+1]2g−2 . The Yang-Mills

measure is:

YM(α) =
ω

d
tr(φ(α)).

From [23] the map φ is injective and onto. Hence we can identify Kr,f(Σg) with
End(Kr,f(Hg)). The Yang-Mills measure is zero on commutators. Thus it factors
through

End(Kr,f(Hg))/[End(Kr,f(Hg)),End(Kr,f(Hg))].
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This quotient is a 1-dimensional vector space. Hence any two linear functionals that
factor through this quotient are equal if they agree on the identity matrix. The trace
also vanishes on commutators, thus it factors through the commutator quotient. The
normalization in the formula causes the two induced linear functionals to be the same.

Next we address the cases of t = ±1. Since the formula for the measure of a spine is
an even function of t, we only need to consider one value. The value t = −1 is more
convenient as the correspondence between K−1(F ) and the SU(2)-characters of π1(F )
is simpler. The skein of the disjoint union of curves ci corresponds to the function
that sends the representation ρ to

∏

i

−tr(ρ(ci)).

Theorem 4. The Yang-Mills measure is well defined on K±1(Σg) for g > 1. Let sc
be an admissibly colored trivalent spine of Σg. If tn, with |tn| 6= 1, is a sequence of

complex numbers converging to ±1 then

lim
n→∞

YMtn(sc) = YM±1(sc).

Proof. The formulas for working with skeins in K−1(F ) are the same as the ones
for |t| 6= 1 except that quantized integers are replaced by ordinary integers. These
formulas are the limits as t → −1 of the values we have been using. Revisiting the
fundamental estimate (8), we see that,

|Tet
(

i i i
k1 k2 k3

)

|
√

|θ(i, i, k1)θ(i, i, k2)θ(i, i, k3)|
≤

√

θ(k1, k2, k3)

(−1)i+k3(k3 + 1)(i+ 1)
(15)

from which we conclude that the right hand side is less than or equal to

C(k1, k2, k3)√
i+ 1

.

Considering the series for the Yang-Mills measure of a spine, comparison to the p-series
implies that it converges as long as the surface has genus greater than 1. Similarly,
the Yang-Mills measure is invariant under handle-slides.

The convergence statement follows from the fact that the series that define the Yang-
Mills measure at tn converge absolutely, and the terms of the series converge to the
terms of the series for the Yang-Mills measure at −1.

For a surface of genus 1 we divide the partial sums, as before, by the number of terms
in the sum, and the series then converges.

Theorem 5. The Yang-Mills measure at t = −1 is the symplectic measure on M(Σg).

Proof. Using Weyl orthogonality to compute Witten’s Yang-Mills measure for a sur-
face of area ρ yields that its value on the spine sc is given by the series

∞
∑

i=0

(−1)i(i+ 1)e−ρc2(i)

6g−3
∏

j=1

1

θ(i, i, kj)

∏

v

Tet

(

i i i
kv1 kv2 kv3

)

,
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where the edges of sc carry colors ki, and kvi are the colors of the edges ending
at the vertex v, and c2(i) is the value of the quadratic Casimir operator on the
(i+ 1)-dimensional irreducible representation of SU(2). As both Witten’s series and
our series converge absolutely, and Witten’s formula converges term by term to our
formula as ρ → 0, the limit of Witten’s Yang-Mills measure is equal to our Yang-Mills
measure at t = −1. Finally, Forman [7] showed that the limit as ρ → 0 of Witten’s
measure is the symplectic measure on M(Σg), normalized as in [7].

Suppose now that |t| = 1 and t is not a root of unity. Evaluation of the Yang-Mills
measure on the empty skein on a surface of genus g yields

∑∞
i=o

1
[i+1]2g−2 . As t is not

a root of unity the number [i+1]2g−2 gets arbitrarily close to 1 infinitely often, which
means that the series does not converge. Therefore the Yang-Mills measure does not
exist away from roots of unity on the unit circle.
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[5] D. Bullock, C. Frohman, J. Kania-Bartoszyńska, The Kauffman Bracket Skein as an Algebra

of Observables, preprint.
[6] E. Buffenoir, Ph. Roche, Two Dimensional Lattice Gauge Field Theory Based on a Quantum

Group, Comm. Math. Phys. 170 (1995), 669-698.
[7] R. Forman, Small volume limits of 2-d Yang-Mills Comm. Math. Phys. 151 (1993), no. 1,

39–52.
[8] C. Frohman, R. Gelca, Skein modules and the noncommutative torus, Transactions of the

AMS, to appear.
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Abstract We compute the Kauffman bracket skein module of the comple-
ment of a twist knot, finding that it is free and infinite dimensional. The
basis consists of cables of a two-component link, one component of which
is a meridian of the knot. The cabling of the meridian can be arbitrarily
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1 Introduction

At first glance, and in original intent [13], the Kauffman bracket skein module
is a formal extension of the Kauffman bracket polynomial to an arbitrary 3-
manifold. As Kauffman’s polynomial (for framed links in S3 ) is equivalent to
the Jones polynomial (for oriented links in S3 ), one may think of the skein
module as a generalization of the Jones polynomial. More recently the module
has taken on a different significance: it is now seen as a deformation of the
SL2(C)-characters of the fundamental group [4, 5, 14]. Using this interpretation
of the skein module of a knot exterior, Frohman, Gelca and the second author
here constructed a quantum version the A-polynomial [6]. This is related back
to the Jones polynomial [15, 16] (not simply by generality) and has implications
for the hyperbolic volume conjecture [9, 12]. Despite all this, there have as
yet been no computations of Kauffman bracket skein modules for hyperbolic
manifolds.

Early computations [13] depended on an I -bundle structure for the manifold,
since projection along the I factor gave a natural mechanism for controlling
complexity. The only other successful method [1, 7, 8] has been to consider the
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108 Doug Bullock and Walter Lo Faro

effect of adding a single 2-handle to a handlebody. This creates a presentation
with fairly simple generators (any basis for the module of the handlebody),
but having an unwieldy set of relations. Eliminating redundant relations is the
most difficult part of the task. What is needed is an effective method of creating
relations among relations, or syzygies, and then keeping track of which relations
can be removed.

This has been managed for all genus one manifolds [7, 8], and for (2, q)-torus
knot exteriors [1]. In principle, the combinatorics ought to be accessible for
genus two manifolds with toral boundary (one added handle), but the compu-
tations are quite daunting in practice. Even for (2, q)-torus knots, the trick was
managed only with help from a particularly nice basis.

The innovation in this paper is a simpler method of keeping track of the re-
lations. We use the established handle addition technique, but we twist the
handlebody instead of the handle, which simplifies many bracket computations.
Our viewpoint also leads to a comfortable and practical method for producing
syzygies that reduce the initial presentation to a simple basis.

2 The theorem

Let M be an orientable 3-manifold. A framed link in M is an embedding
of a disjoint collection of annuli into M . Framed links are depicted by link
diagrams showing the cores of an annuli lying flat in the projection plane (i.e.
with blackboard framing).

Two framed links in M are equivalent if there is an isotopy of M taking one
to the other. Let LM denote the set of equivalence classes of framed links in
M , including the empty link. With R = Z[t±1], form a free module RLM

with basis LM . Define S(M) to be the smallest submodule of RLM containing
all expressions of the form − t − t−1 and © + t2 + t−2 , where
the framed links in each expression are identical outside balls pictured in the
diagrams. The Kauffman bracket skein module K(M) is the quotient

RLM/S(M).

A q -twist knot (right-handed, if not amphichiral) is the alternating knot formed
by inserting a left-to-right string of q half-twists into the coupon in Figure 1.
The 2-twist knot in Figure 2, for example, is the familiar figure-8 knot. Let
Mq be the twist knot exterior, and denote by xy the 0-framed, two component
link also pictured in Figure 1. The meridian is x and the other component is
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Figure 1: Exterior of a q -twist knot and the link xy

Figure 2: Figure-8 knot as a 2-twist knot

y . In general, xlym denotes the cable of xy consisting of l parallel copies of x
and m parallel copies of y . The exponents run over non-negative integers and
1 denotes the empty link.

Theorem 2.1 K(Mq) is free with basis {xlym | m ≤ q}

3 Initial presentation

The knot exterior Mq decomposes into a pair of genus two handlebodies glued
along the 4-punctured sphere S shown in Figure 3. Let H be the closure of the
component of Mq − S containing the coupon. Figure 4(a) depicts H , slightly
deformed so that the upper left and lower right punctures are in the foreground.

The portions of the knot outside H are parallel to a pair of arcs in S that
cut it into an annulus. Therefore, Mq is homeomorphic to H with a 2-handle
attached along this annulus. Its core is shown in Figure 4(b).

There is a standard argument [1, 2, 7, 8, 10] that says K(Mq) is K(H) modulo
skeins differing by slides across the 2-handle. We find this language to be a
little imprecise, so we will rephrase it in terms of relative skeins. Suppose that
the core of the attaching annulus is given the blackboard framing in S . We cut
out a very small bit of this curve, as indicated in Figure 4(c), leaving a framed

Algebraic & Geometric Topology, Volume 5 (2005)
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Figure 3: Decomposing sphere S in Mq

(a) (b) (c)

Figure 4: (a) H (b) Core of the attaching annulus (c) The core as a relative link

arc whose ends are a pair of framed points in ∂H . Following [11, 13], let K1(H)
be the skein module of H relative to those two framed points.

Let L be a relative link in H . Since the ends of L are very close together we
can unambiguously define the completion of L to be the result of gluing its ends
together. The slide of L is formed by gluing its ends to the cut open core of the
attaching annulus. Completion and slide are denoted by c(L) and s(L). Let
r(L) = c(L)− s(L) and extend linearly to r : K1(H) → K(H). The image of r
is the set of all possible relations in K(H) induced by handle slides. Therefore,

K(Mq) = K(H)/r(K1(H)).

Since K(H) is free, the quotient provides a presentation of K(Mq). Any basis
for K(H) serves as a generating set. For relations, choose generators for K1(H),
apply r , and express everything in terms of the basis of K(H). The more
efficient your generating set for K1(H), the more efficient your presentation.
However, even a basis for K1(H) yields unnecessary relations. Computing
K(Mq) thus becomes a search for all relations among the relations in this
presentation.

We need to fix a basis for K(H). Let x and y be the knots in Figure 1, but
only up to isotopy in H . Let z be a meridian that is not isotopic to x in H .
As usual, x, y and z are 0-framed. The set of cables, B = {xlymzn}, is a basis
for K(H) [13].
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We also need to fix generators of K1(H), but first some notes on multiplicative
notation for (possibly relative) links in H .

• The notation is commutative and associative.

• xl , ym and zn denote cables.

• If L is a (possibly relative) link then xlL means the union of L, pushed
away from the knot boundary, with a cable of x very near the knot
boundary.

• Similarly for znL.

• If σ is a (possibly relative) skein then xlznσ is defined by distributing
xlzn across any linear combination of links representing σ . This is well
defined because representatives of σ differ by skein relations that take
place away from the knot boundary.

• If σ is written in terms of the basis {xiyjzk} then xlznσ is just polynomial
multiplication.

• In general, ymL is not well defined, but there are some specific embed-
dings of L for which we want ymL to make sense. These are explained
below.

If L is one of the relative knots

X = , Z = or U =

then ymL denotes a copy of ym inserted into the twist coupon. If 0 ≤ k ≤ q ,
let

Yk = q − k k

where the coupons contain q − k and k twists. By ymYk we mean a cable of y
inserted into the coupon containing k twists, even if k = 0. Lastly,

ymY−1 = q 0

with ym inserted in the coupon that contains no twists.

Lemma 3.1 K1(H) is generated by {xlymznL | L = X , Y0 , Z , or U }.1

1It’s actually a basis, but the proof is annoying and the result is unnecessary.
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Figure 5

Proof Given any relative link in H , it can be isotoped into the oval neighbor-
hood shown in Figure 5. Once there, grab the top and bottom of the oval and
twist in opposite directions a quarter turn each. This should make the tubes
perpendicular to the page so that

X = , Y0 = , Z = and U = .

If not, twist the opposite way and it will.

Now resolve according to a relative version of the argument in [3, Lemmas 1–3].
Each term of the resolution will be a cable of

together with one of X , Y0 , Z or U . The modification introduced in [14,
Theorem 6.2] lets us force an X to end up above the cabled link and a Z to
end up below it. Neither Y0 nor U can become entangled. Now we untwist
the oval neighborhood, returning X , Y0 , Z and U to their initial embeddings.
This will twist the cabled link , but it can be further resolved into a polynomial
in x, y and z .

4 Sufficient relations

In this section we locate in r(K1(H)) sufficient relations to eliminate all but
{xlym | m ≤ q} from B . It turns out that powers of z are easy to eliminate and
that powers of y index the complexity of other computations. For this reason,
we introduce the notation σ ∼ ym , meaning σ = t±pym modulo the span of
{xiyjzk | j < m}.

Where x and z are concerned, the relation submodule behaves like an ideal.

Lemma 4.1 If σ ∈ r(K1(H)), then xizkσ ∈ r(K1(H)).
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Proof Suppose L is a relative link in H . Since x and z are nowhere near
the attaching annulus on ∂H , it’s easy to see that xizkr(L) = r(xizkL). This
extends to all of K1(H).

In practice, you compute a relation by grinding some r(σ) down to a polynomial
in x, y and z . Lemma 4.1 then says that any formal multiple of that relation
by xizk is another relation. For example, from the relation r(ymZ) we obtain
a class of relations:

xl−1znr(ymZ) = xl−1zn(ymz − ymx) (1)

= xl−1ymzn+1 − xlymzn

Relations (1) can be used to eliminate {xlymzn | n > 0} from the presentation
of K(Mq). Powers of y are more troublesome. To eliminate {xlym | y > q},
we need some new relations.

Lemma 4.2 c(ymYk) ∼ ym+k+1

Proof Induct on k . If k = 0, we have

c(ymY0) = −t−3
m

By counting wrapping numbers in each term of the resolution one can see that
c(ymY0) ∼ ym+1 .

Another wrapping number argument shows that no term of c(ymY−1) has a
power of y larger than m.

For k ≥ 1 consider the relation

k − 1 = t2 k − 1 + t−2
k − 1 (2)

+ k − 1 + k − 1

Insert ym into the coupon and take the closure of every term to get

c(ym+1Yk−1) = t2c(ymYk−2) + t−2c(ymYk) + ym(meridians),

which can be solved for ymYk .
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Lemma 4.3 s(ymYq) ∼ yq+m .

Proof Note first that

s(Yq) = = −t3 (3)

= −t4c(Yq−1) − t2(meridians)

Then insert ym into the coupon and apply Lemma 4.2.

Lemmas 4.2 and 4.3 imply r(ymYq) ∼ yq+m+1 . Extended to include powers of
x, there relations serve to eliminate any remaining terms of B with y -degree
greater than q . Hence, with

R = {xizkr(ymZ)} ∪ {xir(ymYq)}

Proposition 4.4 The presentation B modulo R reduces to the free presenta-
tion of Theorem 1.

To finish the proof of Theorem 1 we must find relations among the relations
r(K1(H)) sufficient to write them all in terms of R. Such a relation among
relations is called a syzygy.

5 Syzygies

Here we show that R generates r(K1(H)). Recall that R contains relations of
the form

r(xlymznZ), and

r(xlymYq)

We need to show that the span of R, denoted 〈R〉, contains all relations of the
form

r(xlymznX),

r(xlymznY0), and

r(xlymznU)

Lemma 5.1 If L is any link in H (or any skein in K(H)), then xL−zL ∈ 〈R〉.
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Proof Express L in terms of the basis B and then apply (1).

Lemma 5.2 r(xlymznX) ∈ 〈R〉

Proof Slide X and resolve as

s(X) = =

= t + t−1

= t + + t−2

= −t−2 + + t−2

Modulo terms of the form xL − zL, this is

s(X) = −t−2xs(Yq) + c(X) + t−2xc(Yq)

which is the syzygy r(X) = −t−2r(xYq). Inserting ym into the coupon and
multiplying by xlzn gives the syzygy

r(xlymznX) = −t−2r(xl+1ymznYq)

Finally, on the right hand side, convert z ’s to x’s by repeated applications of

r(xiymzkYq) = r(xiymzkYq) − r(xi+1ymzk−1Yq) + r(xi+1ymzk−1Yq)

= zr(xiymzk−1Yq) − xr(xiymzk−1Yq) + r(xi+1ymzk−1Yq)

This will express r(xlymznYq) as r(xl+nymYq) plus terms of the form xL− zL.
Lemma 5.1 insures that all terms are in 〈R〉.

Lemma 5.3 Modulo relations of the form xL − zL, we have the syzygy

r(ymYq) = t4r(ymYq−1)
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Figure 6

Proof Leaving obvious isotopies to the reader,

t4s(Yq−1) = −t = −t2x2 − c(Yq)

Subtract this equation from Equation (3) and insert ym as usual.

Lemma 5.4 For 0 ≤ k ≤ q , r(xlymYk) ∈ 〈R〉.

Proof Induct downward on k . If k = q we are looking at r(xlymYq). If
k = q − 1, apply the syzygy from Lemma 5.3 multiplied by xl .

If k ≤ q−2, apply r to Equation (2) k+1 twists in the coupon. Modulo terms
of the from xL − zL, this becomes the syzygy

r(yYk+1) = t2r(Yk) + t−2r(Yk+2) + r(xX) + r(xZ)

Solve for r(Yk), multiply by xl , and insert ym in the usual place.

Lemma 5.5 r(xlymznY0) ∈ 〈R〉.

Proof Convert r(xlymzlY0) to r(xl+nymY0) as in the proof of Lemma 5.2.
Then apply Lemmas 5.1 and 5.4.

Lemma 5.6 r(xlymznU) ∈ 〈R〉.

Proof Consider the link in Figure 6. The relative component is Yq , and the
closed component isotops into the coupon where it resolves into some polyno-
mial p(x, y, z). On the other hand, by resolving the crossings as shown we
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obtain (modulo terms of the form xL − zL)

pYq = t2U + x + xX + t−2

= t2U + x + xX − t

= t2U + x + xX − t2Y0 − xX

Now apply r to this equation to obtain the syzygy

r(pYq) = t2r(U) ± r(xZ) − t2r(Y0)

(The sign of r(xZ) depends on the number of twists in the coupon.) Insert ym ,
multiply by xlzn , and solve for r(U). Except for the term r(xlymznU), convert
all z ’s to x’s as usual. The resulting linear combination will lie in 〈R〉

We have shown that 〈R〉 = r(K1(H)), so K(Mq) must be presented as in
Proposition 1.
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Enhancing Precalculus Curricula with E-Learning:  

Implementation and Assessment 

 

 

Abstract 

 

During Fall semester of 2007, a semester-long, quasi-experimental study was conducted at Boise 

State University to investigate the effectiveness of a systematically sequenced and managed, 

self-paced e-learning activity on improving students’ academic performance and motivation. A 

total of 125 students enrolled in 3 different sections of a Precalculus class participated in the 

study. The e-learning activity was implemented in 2 of the 3 sections as a required homework 

assignment. Students enrolled in one of the 2 selected sections were all engineering majors. The 

3
rd

 section was a control group that did not use the e-learning activity. A pre-test, measuring 

students’ entry-knowledge levels, was administered at the beginning of the semester, and a post-

test was administered at the end of the semester. Students’ learning styles were measured with 

the Gregorc Style Delineator™.  Then, the relationships among the students’ learning styles, 

their academic performance, and self-regulated studying behaviors such as the number of hours 

they spent on weekly e-learning homework assignments were investigated. This study revealed 

that using an e-learning activity as a homework assignment improved students’ knowledge in 

Precalculus about the same as did traditional homework that was collected, graded and returned 

daily. Moreover, we found that different types of learning styles were associated with different 

degrees of knowledge improvement in Precalculus.  Several recommendations on instructional 

strategies related to students’ learning styles are discussed. 

 

Introduction 

 

To facilitate learning processes and to help students produce successful learning, especially 

during the early years of their study, educators often seek innovative instructional technology.  

One such technology is e-learning.  Presently, e-learning is already deeply integrated into school 

curricula to motivate students and facilitate learning.  Numerous studies have revealed the 

benefits of implementing self-paced e-learning strategies in traditional curricula for improving 

critical learning variables such as motivation, self-efficacy, goal-orientation, satisfaction, and 

persistence.
1
 Especially, there has been a fair amount of acceptance and practice among the 

community of science and engineering education community that traditional teaching can be 

greatly benefited by incorporating e-learning strategies.
2-6 

 Leading academic organizations such 

as the Sloan Consortium also advocate that incorporating online learning strategies into the 

engineering curricula can augment some of the ABET engineering competencies.
2
  

 

E-learning is also ideal for individualized learning.  In contrast to lecture-based classroom 

learning, computer-based learning programs allow students to adjust the pace, sequence and 

method of learning to better fit their learning behavior and needs.  A study by Yoshioka, 

Nishizawa, and Tsukamoto
7
 revealed that individualized exercises improved calculating skills of 

engineering students in a fundamental mathematics class. A significant advantage associated 

with e-learning is that students can learn at their own convenience and are less dependent on the 
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instruction given in class, making it advantageous for nontraditional students that may find it 

difficult to attend class on a daily basis. 

 

For example, ALEKS (Assessment and LEarning in Knowledge Spaces) is a web-based e-

learning program.
8
  It provides a systematically sequenced and managed, self-paced e-learning 

activity, designed to help improve math skills.  ALEKS breaks down the Precalculus curriculum 

into topics, or problem types, that students must work through in order to master the material and 

complete the course. It is possible to customize a course to include only desired topics; this 

course was customized and consisted of 178 topics from a list of about 250 total Precalculus 

topics. 

 

Each student takes an initial assessment in ALEKS to determine which topics he or she has 

already mastered and which topics he or she is ready to learn. Following this initial assessment, 

the students begin working in “Learning Mode”. Here the students are presented with a list of 

topics selected by the web based engine that, based on their assessment, they have the 

prerequisite knowledge to learn. A student then picks a topic to work on and is given several 

problems from that topic to practice. When the student types in an answer (very few problems 

are multiple choice), ALEKS provides immediate feedback concerning the correctness of the 

given response. If the student has trouble with a certain topic, there is always a complete 

explanation available for any problem. When the student has answered a sufficient number of 

problems from the chosen topic correctly, that topic is added to the student’s Knowledge State 

and the student can move on to a new topic. As the student masters the topics in this manner, 

more complex topics become available for him or her to work through, with the end goal being 

complete mastery of the Precalculus curriculum.  

 

In addition to allowing students to work problems in Learning Mode, ALEKS periodically 

reassesses the students. These 20-30 question assessments occur after a student has completed 20 

new topics or spent 10 hours logged into ALEKS. If a student answers a question incorrectly 

during an assessment, that topic is removed from the student’s Knowledge State and the student 

must re-demonstrate mastery of that topic in Learning Mode. This provides an excellent way for 

the students to review and to reinforce topics from throughout the semester, as well as to ensure 

that the students retain the topics they have learned.  

 

ALEKS provides a personalized, time-efficient environment in which each student is able to 

work through the Precalculus curriculum at his or her own pace. If a student begins the course 

already having mastered certain topics, and demonstrates this mastery on an assessment, ALEKS 

does not require the student to work through problems from that type. Rather, the student is free 

to move on and spend time working on topics that they have not yet mastered. Many students 

informally commented throughout the semester that they appreciated this feature of ALEKS.  

 

Working problems using ALEKS also has significant advantages over doing traditional “pencil 

and paper” homework.  First, the student receives immediate feedback as to whether he or she is 

doing the problem correctly. While this is true for almost any e-learning strategy, ALEKS has 

the additional advantage that the student is required to work several problems from each topic 

P
age 13.550.3



correctly before that topic is considered mastered and the student is able to move on. Therefore, 

if a student works a problem incorrectly, that student must go back through his or her work and 

not only find the mistake, but correct the mistake and answer the problem correctly. This is not 

only a very useful process for students to practice, but a process that is very hard to require of 

students in a more traditional classroom setting with handwritten and hand-graded homework.  

Also, a significant advantage to using progress in ALEKS as homework in lieu of written 

homework assignments, is that it significantly reduces the load on the instructor while still 

providing critically needed feedback and student accountability. 

 

When incorporating e-learning into their curricula, another important element that educators 

should take into account is learners’ characteristics such as pre-knowledge levels, personalities, 

or learning styles.  There are various instruments that measure people’s different cognitive 

tendencies or learning styles, including the Gregorc Style Delineator
TM

.  The Style Delineator 

measures four qualities of concreteness, abstraction, sequence, and randomness in people’s 

perception toward, and ordering of, their world.
9
  As shown in Table 1, dominant learning styles 

are identified with one of four style types: concrete-sequential (CS), abstract-sequential (AS), 

concrete-random (CR), and abstract-random (AR).  Every individual has the ability to orient 

himself or herself toward all four styles.  However, people tend to have strong orientation toward 

one or two, or sometimes even three, dominant style(s).  The Style Delineator reveals a score for 

each style type, identifying the dominant learning style(s) among the 4 types.  For example, a 

person might score 39, 19, 26, and 16 for CS, AS, CR, and AR, respectively, resulting in a 

dominant learning style of CS.  

 

Table 1. Four Learning Style Types Identified by Gregorc Style Delineator.  

 Concrete Abstract 

Sequential CS AS 

Random CR AR 

 

Gregorc explains that people with different dominant styles tend to have different views of their 

world and exhibit different characteristics.  People with dominant CS styles view and approach 

their experiences in an ordered, sequential, and one-dimensional manner.  They tend to follow a 

‘train of thought’ with a clear beginning and a clear end, and they excel in making, gathering, 

and controlling objects.  People with dominant AS styles also approach their experiences in an 

ordered and sequential manner, but their approach is two-dimensional, which is analogous to a 

tree with multiple branches.  They value knowledge, and they are willing to gain knowledge for 

the sake of knowledge.  People with dominant CR styles use intuition and instinct and are 

concerned more with ideals than with materials, and more with attitudes than with facts.  They 

pay attention to applications, methods and processes of knowledge.  People with dominant AR 

styles behave in a non-linear and multi-dimensional manner, their thinking processes are 

anchored in feelings, and they concentrate their energies on social relationships.   

 

However, no one possesses one ‘pure’ style; every individual is capable of orienting himself or 

herself toward all four styles. Because learners tend to prefer learning environments that support 
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and stimulate their dominant style, understanding learning styles helps educators evaluate and 

modify their instructional methods and strategies.  

 

We conducted a semester-long study in fall of 2007 to investigate the effectiveness of using the 

e-learning program, ALEKS, on improving academic performance and motivation of students in 

Precalculus classes.  We also investigated the relationships between the students’ learning styles, 

their degree of improved knowledge in Precalculus, and their self-regulated studying behaviors 

while using ALEKS. 

 

Method 

 

Research Questions 

 

This study aims to answer the following questions: 

1. Does the use of an e-learning activity (ALEKS) have a significant effect on improving 

students’ knowledge in Precalculus? 

2. Are there strong relationships between students’ learning styles and the degree of 

improved knowledge in Precalculus?  

3. Are there strong relationships between students’ self-regulative behaviors (the total time 

spent and the level of Math skills mastered while using ALEKS) and the degree of 

improved knowledge in Precalculus? 

4. How do engineering students perceive the use of ALEKS in their Precalculus class as a 

supplementary learning activity? 

 

The first three research questions were answered by testing the following null hypotheses, and 

the last research question was investigated by using descriptive statistics and qualitative data: 

1. The use of an e-learning activity (ALEKS) has no significant effect on improving 

students’ knowledge in Precalculus. 

2. There are no strong relationships between students’ learning styles and the degree of 

improved knowledge in Precalculus. 

3. There are no strong relationships between students’ self-regulative behaviors (the total 

time spent and the level of Math skills mastered while using ALEKS) and the degree of 

improved knowledge in Precalculus.  

 

Research Design and Participants  

 

A nonequivalent control group design was used in this quasi-experimental study.  A total of 129 

students enrolled in 3 sections of MATH 147 Precalculus class in the fall semester of 2007, but 4 

students withdrew during the semester.  Therefore, a total of 125 students participated in this 

study.  Among them, 88 students (70.40%) were male and 38 students (29.60%) were female.  

The students in the 1
st
 section of the class (N = 48) were all engineering majors and were taught 

by a male instructor.  The students in the 2
nd

 section (N = 40) and the 3
rd

 section (N = 37) were a 
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mixture of various majors across the disciplines (with 6 and 9 of them being engineering majors 

in sections 2 and 3, respectively).  Both the 2
nd

 and 3
rd

 sections were taught by the same female 

instructor.  All 3 sections of the class were held for 50 minutes, 5 times a week, Monday through 

Friday.  

 

Section 1 and section 2 were the experimental group which participated in an e-learning activity 

(the use of ALEKS) as a weekly homework assignment. We verified that section 1 and section 2 

were not significantly different in terms of their pre-test scores.  Section 3 was a control group in 

which an e-learning activity was not used. Table 2 describes the different conditions of the 

groups.  

 

All three sections moved through the material according to the same schedule.  The schedule was 

devised in a way that allotted approximately 10 classes for the first 79 ALEKS topics (chiefly 

review from intermediate algebra topics), and then moved through the remaining material (99 

topics in ALEKS) at an average rate of about 1.6 topics per class (8 topics per week).  Class 

grades were comprised for all three sections as follows:  homework was 30% of the grade; each 

of five exams was worth 11%, and the final comprehensive exam was 15% of the final grade. 

The homework grade in the e-learning groups (sections 1 and 2) was set according to the 

percentage of the assigned material that was completed, with 8 deadlines at approximately 2 

week intervals throughout the semester.  These dates corresponded to the completion of the 

appropriate chapter in the assigned textbook.  Meanwhile, in section 3, homework was assigned, 

collected and graded by the instructor on a daily basis. 

 

Table 2. Experimental and Control Groups.  

  Student  E- 

Group Section Major Male Female Total Instructor learning 

Experimental 1 Engineering 44 4 48 Instructor 1 ALEKS 

 2 Various 23 17 40 Instructor 2 ALEKS 

 Subtotal  67 21 88   

Control 3 Various 21 16 37 Instructor 2 None 

 Total  88 

(70.40%) 

37 

(29.60%) 

125 

(100%) 

  

 

Instruments and Procedures 

 

Pre- and Post-Knowledge Tests: A pre-test was administered at the beginning of the semester to 

measure students’ entry-knowledge levels in Precalculus, and a post-test at the end of the 

semester.  Eleven identical questions were included in both tests, and 105 students completed 

both tests (20 missing data when excluding missing cases). 

 

Gregorc Style Delineator: To assess students’ learning styles, the Gregorc Style Delineator was 

administered during the semester, and 117 students completed the instrument (8 missing data).  

P
age 13.550.6



 

E-Learning Activity (ALEKS): Students in the experimental group (section 1 and section 2) were 

asked to use ALEKS as a homework assignment. The system kept track of the total time 

individual students spent with ALEKS and the level of Math skills they mastered in ALEKS, and 

81 sets of data were retrieved from the system after the semester was over (7 missing data when 

excluding missing cases).  

 

Exit Survey: At the end of the semester, the engineering majors (section 1) submitted an exit 

survey with 21 questions.  The exit survey measured students’ perceptions toward the use of 

ALEKS and their motivation and confidence levels in Math skills for continuing their study in 

engineering.  

 

Data Analysis: The data were analyzed using SPSS 15.0 for Windows (2006) [10]. Statistical 

procedures used for inferential statistics include a Wilcoxon signed ranks test, a Mann-Whitney 

U test, and Pearson correlation coefficients.
11, 12

 

 

Results 

 

Students’ Overall Learning of Precalculus 

 

The possible range of the pre-test and post-test scores was zero to 100.  The pre-test scores of all 

entire participants ranged from 0 to 47 (M = 9.86, SD = 8.25), and the post-test scores ranged 

from 14 to 100 (M = 70.27, SD = 18.25) (see Table 3).  The pre-test scores and post-test scores 

were fairly skewed (Skewness = 1.49 and -1.06, respectively).  The difference between 

individual students’ pre-test scores and their post-test scores is the degree of improved 

knowledge (i.e., learning) (M = 60.40, SD = 17.09).  The normality test on the knowledge 

improvement scores showed that its normality assumption was not met (Shapiro-Wilk = .95, p < 

.00).  Therefore, a nonparametric Wilcoxon signed ranks test was conducted to reveal whether or 

not the difference between the pre-test scores and the post-test scores was significant.
11 

 The test 

revealed the difference was significant at a .01 level, Z (104) = -8.89, p < .00, indicating that 

overall, students significantly improved their knowledge in Precalculus during the course of a 

semester.  

  

Group Differences in Knowledge Improvement in Precalculus 

 

The mean values of the pre-test scores and post-test scores for the experimental group (sections 1 

and 2 combined) were 8.58 (SD = 7.35) and 67.82 (SD = 19.72), respectively; therefore, the 

average degree of improved knowledge was 59.23 (SD = 18.04). The mean values of the pre-test 

scores and post-test scores for the control group were 12.78 (SD = 9.48) and 75.87 (SD = 12.95), 

respectively; therefore, the average degree of improved knowledge was 63.09 (SD = 14.62).  
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Table 3. Descriptive Statistics for Pre-Test and Post-Test Scores Between Groups. 

  Pre-Test Post-Test Difference 

Experimental M 8.58 67.82 59.23 

(N = 73) SD 7.35 19.72 18.04 

     

Control M 12.78 75.87 63.09 

(N = 32) SD 9.48 12.95 14.62 

     

Total M 9.86 70.27 60.40 

(N = 105) SD 8.25 18.25 17.09 

 

Effects of ALEKS on Knowledge Improvement in Precalculus 

 

The first null hypothesis was: The use of an e-learning activity (ALEKS) has no significant 

effect on improving students’ knowledge in Precalculus.  As shown in Table 3, the control group 

produced a higher average post-test score than the experimental group did.  However, the control 

group’s pre-test scores were also higher than the experimental group’s pre-test scores.  Because 

the assumptions of normality were not met for the pre-test, post-test, and degree of improved 

knowledge variables, we conducted multiple Mann-Whitney U tests to examine the differences 

in pre-test scores, post-test scores, and knowledge improvement between the two nonparametric 

independent samples.  

 

The U tests revealed significant differences in pre-test scores and post-test scores between the 

experimental and control groups, Z = -2.36, p < .05, and Z = -2.00, p < .05, respectively.  

However, the degree of knowledge improvement between the two groups was not significantly 

different, Z = -.58, p > .05 (see Table 4).  Therefore, the first hypothesis was not rejected.  There 

was no significant difference in the degree of knowledge improvement between section 1 and 

section 2 (i.e., engineering majors vs. non-engineering majors) of the experimental group either, 

Z = -1.32, p > .05.  

 

Table 4. Results of Independent-Samples Mann-Whitney U Tests. 

Observation Mann-Whitney U Z Sig. (2-tailed) 

Pre-test  829.00 -2.36 .01 

Post-test 880.00 -2.00 .04 

Knowledge improvement 1083.50 -.58 .55 

 

P
age 13.550.8



Learning Styles and Knowledge Improvement in Precalculus  

 

The most frequently identified dominant learning style among the students was concrete-

sequential (CS); 60 students (51.79%) scored CS as their dominant style.  Abstract-random (AR) 

was the most frequently identified weakest learning style among the students; 46 students 

(39.31%) scored AR as their weakest style. 

 

Although the normality assumption for the degree of knowledge improvement variable was not 

met, the normality assumptions for the four sets of learning style scores were not violated.  

Therefore, Pearson correlation coefficients were computed.  To minimize the chances of making 

a Type I error across the 10 correlations, the Bonferroni approach was used and a p value of less 

than .005 (.05/10 = .005) was considered for significance.
12 

 An interesting finding from the 

correlational analyses was that the scores of the two sequential types (CS and AS) and the scores 

of the two random types (CR and AR) among students were negatively correlated at the .005 

significant level (see Table 5).  This implies that when students have a strong sequential 

tendency or preference in a concrete or abstract manner (CS or AS), they tend to exhibit a weak 

random tendency or preference in those manners (CR or AR).  

 

The second null hypothesis was: There are no strong relationships between students’ learning 

styles and the degree of improved knowledge in Precalculus.  This null hypothesis was rejected 

as we found that the more AS tendency or preference students had, the more they increased their 

knowledge of Precalculus (Pearson’s r = .28, p < .005).  On the other hand, when using a p value 

of .05 as the significant level by taking a risk of making a Type I error, it was found out that the 

more CR tendency or preference students had, the less they increased their knowledge of 

Precalculus during the course (Pearson’s r = -.24, p < .05).  However, as explained above, the 

possible Type I error when using a p value of .05 across 10 correlations should be noted, and this 

result should be interpreted with caution.  Also, it is important that these results indicate 

correlation, not causation; therefore, it should not be interpreted as if the characteristics of AS 

and CR caused the observed results. 

 

Table 5. Correlations Matrix among Learning Styles and Degree of Knowledge Improvement. 

   CS AS CR AR Knowledge Improvement 

Pearson Correlation CS - .11 -.59
**

 -.51
**

 .13 

 AS - - -.36
**

 -.59
**

 .28
**

 

  CR - - - .02 -.24
*
 

  AR - - - - -.15 

**  Correlation is significant at the 0.005 level (2-tailed). 

*  Correlation is significant at the 0.05 level (2-tailed). 

  

Self-Regulative Behaviors While Using ALEKS and Knowledge Improvement in Precalculus 
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The third null hypothesis was: There are no strong relationships between students’ self-regulative 

behaviors (the total time spent and the level of Math skills mastered while using ALEKS) and the 

degree of improved knowledge in Precalculus.  To test the hypothesis, we analyzed the total time 

(measured in hours) students spent with ALEKS and the level of Math skills they mastered in 

ALEKS obtained from the experimental group (section 1 and section 2). See Table 6. 

 

Table 6. Descriptive Statistics for Total Time Spent and Mastery Level Achieved in ALEKS. 

  Total Time Spent
 b

 Math Skills Mastered 

Section 1 M 115.69 88.07 

(N = 41)
a
 SD 39.68 11.71 

    

Section 2 M 67.59 85.03 

(N = 40) SD 36.00 17.94 

    

Total M 91.64 86.55 

(N = 81) SD 44.77 15.09 
a
 7 missing cases when excluding missing cases listwise 

b 
measured in hours 

 

The normality assumptions for all three variables (total time spent, mastery level, and degree of 

knowledge improvement) were not met; therefore, Spearman’s rho, a nonparametric equivalent 

of the Pearson correlation coefficient, was calculated.  The results showed that the level of Math 

skills mastered in ALEKS and the degree of improved knowledge were significantly correlated 

at a .01 level, but the total time spent with ALEKS and the degree of improved knowledge were 

not (see Table 7). 

 

Table 7. Correlations Matrix between Learning with ALEKS and Degree of Knowledge 

Improvement. 

   

Total Time 

Spent 

Mastery 

Level 

Knowledge 

Improvement 

Spearman’s rho Total Time Spent - .03 -.09 

  Mastery Level - - .62
**

 

  Learning - - - 

**  Correlation is significant at the 0.01 level (2-tailed). 

(Listwise N = 73) 

 

Engineering Students’ Perceptions toward the Use of ALEKS 

 

The fourth research question was: How do engineering students perceive the use of ALEKS in 

their Precalculus class as a supplementary learning activity?  The exit survey revealed that 

students thought that using ALEKS as a supplementary learning activity helped them to learn 

Math (M = 5.5 on a scale of 1 to 7 when 7 is the highest score).   Figure 1 presents the frequency 

of students’ responses to the statement “ALEKS helped me learn Math” on a 7-point scale.  The 
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students who rated the usefulness of ALEKS as low mentioned that they did not like its highly 

structured and controlled format.  On the other hand, the students who rated the usefulness of 

ALEKS as high commented that they liked the nature of self-paced learning and the feedback on 

their learning progress provided by the system.  
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Figure 1. Frequency of Responses to Statement “ALEKS helped me learn Math.”  

 

Another question in the survey measured the engineering students’ confidence levels about their 

Math preparation for calculus; the average score was 5.36 on a scale of 1 to 7, where 7 is the 

highest score.  The data were negatively skewed (Skewness = -1.08, see Figure 2).  No 

significant correlations were found between the engineering students’ learning styles and their 

perceptions on the usefulness of ALEKS or their confidence levels in Math preparation for 

Calculus.   
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Figure 2. Frequency of Responses to Statement “I am confident about my math preparation for 

calculus.”  

 

Some other results are qualitative. The instructor for sections 2 and 3 indicated that it felt as 

though she was teaching two different classes.  She remarked that the ALEKS material seemed 

easier, and that there seemed to be less material to cover.  Also, she noted less attendance in the 

ALEKS section, with ½ to ⅔ of the class attending section 2, and with ⅔ to ¾ of the class 

attending section 3 (no ALEKS).  She also noted that the ALEKS section required about five 

hours less grading than the non-ALEKS section. The instructor for section 1 also reported low 

attendance on a daily basis. This raises an interesting question -- to what degree can the use of 
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ALEKS can compensate for the absence of classroom learning?  It should be noted that section 3 

had written homework collected daily, which promoted attendance. Sections 1 and 2 did not have 

anything collected daily. Thus, the control group in this study (section 3) consisted of “best 

practices” in terms of mathematics instruction. A more closely matched control group would 

have only collected and graded homework about once every two weeks to coincide with the 

deadlines for student achievement in ALEKS.  One would predict such a control group to be less 

successful in terms of overall mathematics learning than this “best practices” control group was. 

To investigate these new research questions, future research might be conducted to correlate 

students’ attendance rates, their use of ALEKS, homework due dates and their academic 

performance.    

 

Conclusions 

 

This study found that using an e-learning strategy (ALEKS) as a homework assignment 

improved students’ knowledge in Precalculus about the same as traditional homework that was 

collected, graded and returned daily. Based on the positive results that instructors at the 

university had had with ALEKS in the past,
13,14

 it was somewhat surprising that the experimental 

(ALEKS) group did not outperform the control group. As the study was quasi-experimental, 

though, some threats to internal and external validity could not be effectively controlled, and 

conclusions from the study are necessarily guarded -- with the use of a convenience sample 

instead of random selection and random assignment, other factors in addition to the use of the e-

learning activity could have influenced the results.   

 

Findings of this study support the notion that a self-paced e-learning system can be effectively 

used as a supplementary learning activity.  For example, a closer look at the students’ self-

regulative behaviors while using ALEKS revealed that the level of Math knowledge mastered in 

ALEKS was significantly correlated with the level of improved knowledge in Precalculus 

measured by the gap between a pre-test and a post-test.  This finding is somewhat expected, as 

both results indicate students’ improved knowledge in Math (therefore, the results are 

correlated).  However, helpful implications can be drawn from this finding:  First, instructors can 

rely on ALEKS as a homework engine that provides students with timely, reliable feedback 

while maintaining student accountability to accomplish the homework goals. For instructors that 

grade daily homework assignments, this has a profound impact on instructor time, freeing time 

that would have been otherwise allocated to grading of homework. Second, instructors can 

monitor students’ use of ALEKS to detect low-level performers, and provide personal feedback 

and additional guidance.  In other words, the use of a self-paced e-learning activity provides 

instructors with data and opportunities that enable them to direct their time and attention to 

individual students who need individualized feedback.  It also makes effective use of in-class 

instruction while reducing the grading burden.   

 

Another interesting finding was that the more AS type of learning style students had, the more 

amount of knowledge in Precalculus they gained.  However, this is not too surprising, since the 

characteristics of AS include a high level of aptitude in abstract thinking and problem solving 

such as Math or Music.  Instead, more attention should be paid to the group(s) of students whose 

learning styles are negatively correlated with their performance in Math.  For example, this study 
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indicates the possibility that the more CR tendency or preference students have, the less amount 

of knowledge in Precalculus they gained during the course, compared to their AS counterparts. 

Although this study is unable to support generalizablity of this finding, a reasonable 

recommendation is to provide students in Math classes, especially those with a strong CR 

tendency, with more ‘concrete examples’ of abstract Math problems and learning guidance for 

following step-by-step, sequential learning processes when solving problems (e.g., a job aid, a 

checklist, or a workbook). 

 

Future Work: 

 

The e-learning strategy, ALEKS, has now been used at Boise State University for three 

years.
13,14

 As a result of this, it has been observed by several mathematics instructors at Boise 

State University that students that have used ALEKS in Precalculus, do very well in subsequent 

mathematics courses. One instructor that volunteered to participate in an ongoing study 

observed, “I had a student [in fall, 2006] who was struggling with Precalculus due to deficits in 

prerequisite material.  The student started working with ALEKS as part of course work for a 

different class, [an engineering class] and I noticed within a few weeks that the number of errors 

the student made was decreasing.  Having drilled on basic skills, the student was able to focus 

more on the Precalculus material, instead of being lost in the "basic algebra" steps.  This student 

was ultimately successful in Precalculus, and I attributed that success, at least in part, to work on 

ALEKS.” We postulate that an important outcome of using ALEKS that occurs during 

Precalculus throughout the semester, is the repair of prerequisite skills. To date, we have not 

quantified this by measuring prererequisite knowledge for student participants.  Future work will 

measure the extent of prerequisite knowledge at the beginning and end of the course, as the 

hierarchical nature of the content in ALEKS forces students to exhibit mastery of prerequisite 

knowledge before learning new material. Longitudinal studies are also underway to quantify the 

long term effects of this e-learning strategy on student success as they progress through the 

calculus sequences. 
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The Implementation of an Online Mathematics  

Placement Exam and its Effects on  

Student Success in Precalculus and Calculus 

 

 

Introduction  

Engineering education research on the impact of freshman engineering courses reveals a close 
connection between graduation rate and first semester GPA.1 The same research also explains the 
importance of first-semester math placement, so as to provide students with the necessary 
background for success. For example, students at Purdue University that earned a grade of A in a 
pre-calculus course in the first semester had the same engineering retention rate as students who 
earned a B in the first semester calculus class.1 Yet, if those same students are placed based on 
their SAT math scores, such students would probably fail calculus if taken in their first 
semester.1 A recent study on parameters that affect student success indicated that the grade 
earned in a student’s first college level mathematics class was significantly correlated to whether 
or not those students persisted in engineering, while the level at which they began mathematics 
study at the university was not.2 French, et al. conclude in their study of indicators of engineering 
students’ success and persistence, that achievement of good grades at the student’s university is 
an indicator of persistence, and suggests that retention programs focus on academic 
achievement.3 These studies highlight the importance of timely and accurate student placement 
in mathematics in terms of success in engineering programs. 

 

A number of different math assessment tools are widely used by universities for student 
placement in mathematics courses. These tools include the mathematics portions of the ACT 4 
and SAT,5 the mathematics AP exams,4 COMPASS4 examinations and CLEP5exams. Many 
universities and mathematics departments also have internal exams used for math placement that 
they have developed over the years and routinely administer. Student scores on the ACT and 
SAT exams are also used by most universities as part of their admissions criteria, and it is 
common practice to record and use for both admissions and placement the highest score achieved 
by students on these examinations. Thus, information about what students know, or presumably 
knew at some point in their history, is available in the form of ACT or SAT or both to 
mathematics departments. These scores are frequently used for first semester mathematics 
placement at the precalculus and calculus levels. However, the ACT/SAT information does not 
provide a current measure of a student’s knowledge in mathematics. Thus, for example, if a 
student last took either of these examinations in the middle of their junior year of high school, 
and then did not take mathematics during their senior year, a significant change in current math 
knowledge would be expected to occur. Also, students who continued in their mathematics 
instruction in their senior year of high school but did not retake the SAT or ACT examination 
would be placed too low. At Boise State University, which is an accessible metropolitan 
university, it is not uncommon to encounter students that took the ACT or SAT one time only. 
For example, in fall 2008, among first-time first semester freshmen, 34% of engineering students 
at Boise State University took one of the exams (ACT or SAT) one time only, most likely during 
their junior year of high school. 
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This paper reports on a novel online math assessment strategy originally developed and deployed 
in fall 2007 at the University of Illinois, where it was administered to approximately 3500 
students, and which now requires it as a math placement exam for all incoming first-year 
students. The methodology by which the assessment method was rapidly implemented at both 
the University of Illinois and by Boise State University is presented, together with some faculty 
perceptions associated with the implementation.  

 

Online Mathematics Assessment: ALEKS 

ALEKS (Assessment and Learning in Knowledge Spaces)6 is a web-based, artificially intelligent 
assessment and learning system that uses adaptive questioning to determine what a student 
knows and what they do not yet know in a course. ALEKS was developed from an assessment 
and teaching system for arithmetic that was based on Knowledge Space Theory.7 The early 
development was funded by the National Science Foundation in 1992. It is now a commercial 
system that is used by individuals and institutions to learn many levels of Mathematics. ALEKS 
is accessible from any computer with web access and a java-enabled web browser. Students are 
required to work problems and enter the solution; there are very few multiple choice answers 
associated with the system. In 2006, Carpenter, et al.8 showed that student preparedness in 
Calculus could be predicted with ALEKS, a study that prompted several other universities to 
deploy ALEKS as an instructional tool to assist with Precalculus and Calculus learning.9-11  

 

This study reports on the use of ALEKS as an assessment tool only – that is, the assessment 
aspect of ALEKS is separated from the teaching system aspect of ALEKS in this study. The 
application of this unproctored, internet-based system as an assessment tool is novel. Being 
internet-based, the system provides significant benefits to students as a result of the easily 
accessed remediation aspect, which is optional for students. It also provides unlimited 
opportunity for re-assessment.  The course product that student knowledge is assessed within for 
this study is termed “Preparation for Calculus,” which if accessed in learning mode, contains 251 
topics divided as shown in Table 1. A typical assessment asks between 29 and 32 questions. 

 

Table 1: Preparation for Calculus Curriculum (ALEKS) 

Curriculum Area in ALEKS Number of Topics 

Real Numbers 30 

Equations & Inequalities 30 

Linear & Quadratic Functions 41 

Exponents & Polynomials 30 

Rational Expressions 27 

Radical Expressions 21 

Exponents & Polynomials 21 

Geometry & Trigonometry 51 
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Prior Assessment Strategies 

Boise State University uses a variety of indicators of student knowledge in mathematics in order 
to place students in Precalculus and Calculus courses. These indicators include the Math ACT 
and SAT, the AP Calculus AB exam and the COMPASS examination, see Table 2. The 
minimum scores necessary to place into Precalculus and into Calculus are shown, together with 
the ALEKS assessment benchmarks used in this study. 

 

 

Institutional Information:  

University of Illinois is a very large urban campus that awarded more than 1200 bachelor’s 
degrees in engineering and computer science in 2007. The total undergraduate enrollment in fall 
2007 was 30,895, including 6,940 first-time freshmen. By contrast, Boise State University has 
approximately half the total enrollment of University of Illinois, with a total of 17,574 
undergraduate students in fall 2008, and a full-time equivalent enrollment of 14,608. Its 
engineering college is young, having been formed in 1997, and approximately 130 engineering 
bachelor’s degrees were awarded in 2007. There were 1900 first-time full time freshmen in fall 
of 2007. The enrollment distribution, by age, for both universities that deployed the online 
ALEKS assessment is shown in Figure 1, which illustrates the need for a current measure of 
mathematics knowledge for Boise State University students, many of whom are years beyond 
high school.  

 

Figure 1 Age Distribution of Students
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Table 2: Math Placement at Boise State University 

Math Level ACT score SAT score COMPASS AP Exam (AB) ALEKS 

Precalculus 23 540 61 (ALGP) N/A 40% 

Calculus 29 650 51 (TRIG) 3 70% 
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Both universities that deployed the ALEKS assessment strategy focused on two math levels, 
Precalculus and Calculus I. At the University of Illinois enrollment in these two courses in fall 
2007 was approximately 3500. At Boise State University enrollment in these two courses in fall 
2008 was approximately 750. This study presents the implementation strategy used at both 
universities that enabled the system to be rapidly deployed and institutionalized, together with 
first semester results from Boise State University. 

 

Implementation Strategy: 

The University of Illinois developed the following implementation strategy during their first 
deployment of the ALEKS assessment system in fall 2007.  Boise State University adopted a 
nearly identical strategy for their deployment in fall 2008.  The strategy required a benchmark 
score within the ALEKS Preparation for Calculus curriculum, prior to the end of the open 
enrollment period at the beginning of the semester (add/drop). This benchmark score was set at 
40% of the curriculum for the Precalculus course and 70% for the Calculus course. The personal 
motivation for students to take the assessment and to achieve the benchmark was based on the 
fact that achievement of the benchmark score would consist of 10% of their grade in their 
upcoming course. In other words, each student’s first assignment for their course, due by end of 
add/drop, was to achieve either 40% or 70%, depending on which course they were enrolled in. 
If this benchmark was not achieved, the premise was that students would self-select down one 
math level rather than get a zero on such a large portion of their grade. This premise proved true, 
and there was approximately 99% compliance with student self-selection of courses. At 
University of Illinois, less than 1% of students altogether elected to remain in the course without 
the benchmark score in fall 2007. At Boise State University only 1.5% of students (out of 733) 
elected to remain in the course without the benchmark score in fall 2008. 

 

At both universities all students that registered for the course, whether during the summer or 
prior to that if returning students, were notified electronically of this important first assignment, 
and sent a hyperlink to the assignment at least five times prior to the start of classes. Each 
university maintained their own website containing up-to-date information including FAQs and 
detailed instructions. Students first went to the university website to obtain the instructions, and 
then began the assessment through the ALEKS website. Students entered a particular “course 
number” that identified their university to the ALEKS system, and also entered their university 
student identification number. This enabled the results to be archived by ALEKS and available in 
various downloadable formats to each university. Assessment licenses, enough for one per 
student taking the assessment, were purchased by each institution by their respective Provosts’ 
offices. This allowed each student to be assessed once at no cost to them and was essential to the 
rapid implementation of the new assessment strategy at each institution. Students could elect, at 
their own expense, to take additional assessments for $3.60 (fall 2008 pricing information). 
Alternatively, students could elect to purchase an assessment and learning module ($36.90 fall 
2008 pricing) which provided automatic and nearly unlimited reassessment to students for six 
weeks.  As a further incentive, at Boise State University the Provost provided funds to reimburse 
50% of the purchase price for any student who used the Learning Module to successfully meet 
the benchmark.   Approximately 5% of students took advantage of this offer.  
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Results at Boise State University 

 

Assessment Data 

 

A total of approximately 750 students took the ALEKS assessment. An average time of 160 ± 90 
minutes was spent; approximately 15 minutes of this time would have involved learning to use 
the methods of entering answers within the ALEKS tutorial which is launched prior to any 
assessment questions. Figure 2 shows a histogram of time spent doing the assessment for all 
students that took the assessment at Boise State University in fall 2008.  

 

Figure 2: ALEKS Assessment Duration
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Effect of Assessment on Student Success 

 

We seek to answer the question “What effect did the ALEKS requirement have on student 
success rates.”    No answer is possible without a definition of success.   Both Calculus and 
Precalculus at Boise State University are taught in individual sections with individual instructors 
solely responsible for all exams, assessments, grading rubrics, and final letter grades.    There are 
no pre-determined learning outcomes, and even if there were, there are no standardized or even 
commonly agreed upon assessments that could be used to indicate success.   The only 
measurement we have available is the Pass Rate, defined as follows: 

≠ ABC = number of A’s, B’s and C’s, including plus/minus grades 
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≠ DWF = number of D’s, F’s and W’s, including plus/minus and CW grades. 

≠ Pass Rate = ABC / (ABC + DWF) 

Note that the denominator may not always match enrollment, since there are a small number of 
audits and unresolved incompletes.  These grades are appropriately not part of pass rate 
computation.      

 

Enrollment trends 

 

There are two ways that the ALEKS assessment could reasonably influence success rates. 

1. Primarily, we expect students who do not meet the minimum assessment to drop the class 
before the 10th day of enrollment (Sept 8, 2008). 

2. Less significantly, some students may discover their lack of preparation and self-
remediate through ALEKS. 

 

This first of these should be visible in enrollment data, and indeed this was the case for fall 2008.   
Historically we see nearly full enrollment at the beginning of the term followed by a decline of 
approximately 5% across the first 10 days.    Expected versus actual enrollments are shown in 
Table 3. 

Table 3: Enrollment, Fall 2008 at Boise State University 

 Precalculus Calculus 

Peak enrollment 434 100% 309 100% 

Predicted 10th day 412 95% 294 95% 

Actual 10th day 367 85% 278 90% 

Forced out by ALEKS? 45 10% 16 5% 

 

The last row of the table is a rough calculation.  However, the ALEKS assessment requirement 
had a clear impact on enrollments.   The day-to-day changes in enrollment are shown below.  
The converging graphs are total enrollment and successful ALEKS assessment.   The sharp 
change on Aug 29 corresponds to the official deadline for completing the ALEKS assessment.   
Late assessments were allowed for a few students who added after the first day of class. 
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Figure3: Precalculus Enrollments and Assessments
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Figure4: Calculus Enrollments and Assessments
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Pass Rates 

 

The simplest measurement of the impact of the ALEKS assessment is to compare historical pass 
rates to pass rates in fall 2008.   The chart below shows pass rates across the university from fall 
2005 through fall 2008.   From fall 2005 through spring 2008 there is a slight positive trend, 
indicated with a dashed trendline.   The effect of ALEKS in fall 2008 is a barely perceptible 
bump above the projected trend. This fails to control for any factors except the historical trend.  
In particular, it does not attempt to control for influence of individual instructors.    

 

Figure 5: Pass Rates
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Instructor Influence on Precalculus Pass Rates 

 

To examine the effect of ALEKS on individual instructors we first discard any instructors who 
did not teach Precalculus in both fall 2008 and at least one prior semester.  This removes 13 
instructors and 40% of the student data (860 of 2106 records). Pass rate data for the remaining 
eight instructors are shown below.  (The dashed line represents the aggregate pass rate seen in 
the discarded data.  We include this to point out that its removal is not unduly sanitizing.)   
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Figure 6: Precalculus Pass Rates by Instructor
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Clearly there is enormous and persistent variability from instructor to instructor.  Rather than 
analyze the effect of ALEKS across all sections, we compute the effect on each instructor using 
three different methodologies.  

1. Year-over-Year: defined as fall 08 pass rate minus fall 07 pass rate.  This seeks to 
control for the effects of changes in the student body, both over time and from fall to 
spring.  

2. Before-After: defined as fall 08 pass rate minus aggregate pass rate from prior 
semesters (fall 2005 to spring 2008).  This does not control for possible trends in the 
student body, but does give a much larger data set.   We consider this the weakest 
measure. 

3. Trend: defined as fall 08 pass rate minus the pass rate predicted by a best fit regression 
over prior semesters.  This would theoretically give the best control over both changes 
in student body and changes in the instructor’s pedagogy or methods.   However the 
data are extremely sparse and short time series will often give hugely misleading 
predictions. 
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For some instructors it is not possible to do all three of these – two did not teach in fall 07, and 
four have very short trends (either one or two prior semesters).  Results are shown in Table 4.  

 

Table 4: Pass Rate Gains for Individual Precalculus Instructors 

Instructor Before-After Gain Year-over-Year Gain Gain against Trend 
A -11.1 -2.7 -10.9 
B -7.1 -12.0  
C 5.3 3.8 3.0 
D 6.2 6.2  
E 10.6 8.4  
F 12.7 4.5 6.6 
G 20.8  21.2 
H 23.4   

Average 7.6 1.4 5.0 

 

Significance 

 

It appears that regardless of methodology, most instructors saw a positive change in their fall 
2008 pass rates.   This suggests testing the null hypothesis, “Requiring the ALEKS assessment 
does not affect an individual instructor’s pass rate.”    If true, then the number of instructors who 
show positive gain follows a binomial distribution.    The 5% rejection region would be positive 
gain by 7 or more instructors.  Under normal hypothesis testing parameters of 95% confidence 
we would have to accept the null hypothesis.  The precise probabilities for n = 8 are P (> = 7) = 
0.035 and P (> = 6) = 0.145, so we could reject with 85% confidence.    

 

Analysis of Calculus Pass Rates 

 

One might apply the same analysis to Calculus sections.   Unlike Precalculus, which is mostly 
taught by full time lecturers with heavy and repetitive teaching loads, Calculus is taught by a 
large rotation of research faculty with lighter and more varied loads.  Since fall 2005 there have 
been 27 instructors of Calc I.  Of these, only eight taught Calculus in fall 2008 and two of those 
had no prior experience.   Restricting to the remaining six removes 70% of the data (1263 of 
1793 records), and leaves few year-over-year or trend comparisons. 

     

Table 5: Pass Rate Gains for Individual Calculus Instructors 
Instructor Before-After Gain Year-over-Year Gain Gain against Trend 

U -10.6   
V -1.9 -1.9  
W -0.2  -7.7 
X 15.2 15.2  
Y 19.7   
Z 29.4   

Average 8.6 6.6 -7.7 
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These are inconclusive results and only apply to 30% of Calculus students.  Even the weak null 
hypothesis of “ALEKS does not affect instructors’ results” is clearly impossible to reject.   

 

An Alternative Analysis 

 

Since instructor level analysis for Calculus gave nearly random results and drastically restricted 
the data set we propose an alternate analysis, aggregating all pass fail data for various groups of 
instructors.   For each of Precalculus and Calculus there are four reasonable groups: 

≠ Group I:  All instructors. 

≠ Group II:  Discard from Group I the instructors with the highest and lowest pass rate 
trends.  (Note the two clear outliers in Figure 6.) 

≠ Group III: All instructors who taught in Fall 2008 and at least one applicable prior term. 

≠ Group IV: Group III with outliers removed (as identified in Group II).  

For each group one may compare fall 2008 aggregate pass rate against the rate for fall 2007 
(Year-over-Year) or against all prior terms (Before-After). “All prior terms” refers to six 
semesters of data, between fall 2005 and spring 2008, inclusive.  The advantage is reasonably 
large data sets.  The disadvantage is failure to control for instructor influence beyond hoping that 
it averages out.   Precalculus results are presented in Table 6.  Note the heavy influence of 
outliers. 

 

Table 6: Precalculus Aggregate Pass Rates 

 Before-After 

 All prior terms Fall 2008 

 Sample Size Pass Rate Sample Size Pass Rate 

Raw 

Increase 

 

Percentage 

Reduction in 

DWF Rate 

Group I 1795 56.2% 353 65.6% 9.4% 21% 

Group II 1318 51.4% 282 67.0% 15.6% 32% 

Group III 926 61.2% 274 67.8% 6.8% 17% 

Group IV 449 52.3% 203 70.4% 18.1% 38% 

Year-over-Year 

 Fall 2007 Fall 2008 

 Sample Size Pass Rate Sample Size Pass Rate 

Raw 
Increase 

 

Group I 403 66.7% 353 65.6% (-1.1%) (-3%) 

Group II 297 63.5% 282 67.0% 3.5% 10% 

Group III 211 70.6% 202 68.2% (-2.4%) (-8%) 

Group IV 105 65.7% 131 72.5% 6.8% 20% 

 

Fortunately, individual Calculus instructors do not display such extremes in pass rates. This 
makes outliers difficult to detect but also lowers their impact.  We therefore conclude with 
results for Calculus with just Group I and Group III. 
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Table 7: Calculus Aggregate Pass Rates 

 Before-After 

 All prior terms Fall 2008 

 Sample Size Pass Rate Sample Size Pass Rate 

Raw 

Increase 

 

Percentage 

Reduction in 

DWF Rate 

Group I 1519 55.8% 274 61.4% 5.6% 13% 

Group III 294 47.6% 236 60.4% 12.8% 24% 

Year-over-Year 

 Fall 2007 Fall 2008 

 Sample Size Pass Rate Sample Size Pass Rate 

Raw 
Increase 

 

Group I 302 59.7% 274 61.4% 1.7% 4% 

Group III 65 57.1% 80 64.6% 7.5% 17% 

 

 

In summary, it appears that the addition of the ALEKS assessment as a course requirement has a 
positive impact on the pass rates of students in both PreCalculus and Calculus. Year-over-year 
impacts are less pronounced than historical averages compared to the ALEKS semester.   This 
may reflect other ongoing efforts to improve performance in these two courses at Boise State 
University, as suggested by the positive trends in overall pass rates prior to fall 2008. 

 

Math Instructor Survey 

 

A survey of mathematics instructors at the Precalculus and Calculus levels was conducted at the 
end of the fall 2008 at Boise State University, in an effort to capture instructor perceptions of 
various questions that related to the assessment. Using a scale of 1 to 7, where 1 is “Disagree 
strongly,” 4 is “Neither agree nor disagree,” and 7 is “Agree strongly,” mathematics instructors 
at the Precalculus and Calculus levels were surveyed at the close of the fall 2008 semester. 
Highly experienced instructors (those who had taught the courses seven or more times) agreed 
strongly (7.0 out of 7.0) that student placement is critical in terms of student success in math 
courses. They agreed slightly/moderately (5.4) that this semester’s students had adequate 
preparation for the course. They agreed slightly (5.0) that the last semester they taught the 
course, that students also had adequate preparation for the course.  They agreed moderately (5.9) 
that there was a difference in students’ mathematics preparation this semester as opposed to 
previous semesters, but they agreed only slightly (4.6) that students were significantly more 
prepared in fall 2008 as compared with previous semesters. They agreed slightly/moderately 
(5.4) that a greater percentage of students who started the course persevered as opposed to in 
prior semesters. They neither agreed nor disagreed (3.9) that student performance on quizzes, 
tests, and other assessments indicated greater mastery of course material this semester as 
opposed to previous semesters. A total of seven instructors fell into the category of “highly 
experienced instructors.” When the responses of all surveyed instructors were included (15 
responses), the same trends were observed but to a slightly lower degree. One unsolicited remark 
from an instructor indicated, “The main difference I noted was that I was missing the students 
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who made 10’s, 20’s or 30’s (percents) on the first test. After that first test, I did not really see 
much difference in the students’ work. Many of my students scored 50 or above on ALEKS and 
did poorly in the course. I see no relationship between their ALEKS score and their performance 
in Precalculus.” This remark highlights the fact that these instructors were aware of their 
students’ ALEKS scores, which may have influenced their survey responses. 

  

Discussion 

 

The ALEKS Assessment: Accessible and Unproctored 

 

The ALEKS assessment strategy is online, enabling the assessment to be widely accessible – 
anywhere, anytime. Both universities elected to conduct the assessment in an unproctored 
environment. The rationale for this included first and foremost, the fact that placement into a 
particular Precalculus or Calculus course did not eliminate any university requirements. That is, 
students did not receive “credit” for the prerequisite course by receiving a certain score on the 
ALEKS assessment. Rather, they simply placed into the appropriate level that they showed 
themselves to be ready for. Second, it was not deemed inappropriate for students to use the 
assessment process as part of a personal review of mathematics. That is, if students took a long 
time to answer questions (while they looked up or remembered how to solve various problems), 
it was considered time well spent in review.  In fact, following their initial assessment, 
approximately 5% of students at Boise State University went on to purchase the online 
assessment and learning module, on which they spent an average of 18 hours.  Finally, if 
students received personal assistance during the assessment, it clearly was a self-limiting 
behavior that would result in subsequent poor academic performance in the student’s 
mathematics course. 

 

Upward Mobility 

 

An interesting outcome of using the ALEKS assessment strategy was that it gave students whose 
SAT or ACT scores placed them in Precalculus an opportunity to enroll in Calculus, and those 
that placed at College Algebra or lower, an opportunity to enroll in Precalculus. A remark 
frequently heard from engineering students during summer orientation at Boise State University, 
was, “I took Calculus in high school, why do I need to enroll in Precalculus again?” The ALEKS 
assessment strategy gave those students a chance to demonstrate, to themselves as well as to the 
mathematics department, that they were indeed ready for Calculus.  The Chair of Mathematics at 
Boise State University personally interviewed each student that did not have the required 
ACT/SAT/COMPASS/AP scores (according to Table 2), but that did realize sufficient ALEKS 
scores. A total of 37 students (about 5%) fell into this category; 7 of them placed into 
Precalculus, 24 enrolled in Calculus, and three others enrolled in other mathematics courses. 
Although the sample sizes are too small for meaningful analysis, the pass rate for these 
Precalculus students was about the same as for the Precalculus students with the same instructor 
group, and the pass rate for these Calculus students was slightly lower (8%) than Calculus 
students with the same instructor group.  
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Summary 

 

A novel online assessment strategy for assessing current student knowledge in the Preparation 
for Calculus curriculum was deployed in an unproctored environment at two universities. This 
strategy consisted of requiring benchmark assessment scores in the curriculum that is offered in 
an online environment through the ALEKS Corporation. Students were highly motivated to 
comply with the assessment requirement because 10% of their grade was based on their 
achievement of the benchmark assessment level set for their course. These levels were 40% for 
Precalculus and 70% for Calculus. Each university paid for one assessment for the students, and 
students were allowed to re-assess as many times as they wished. Analysis of the data from 
Boise State University yields the conclusion that the addition of ALEKS assessment as a course 
requirement has a positive impact on student pass rates. Depending on the analysis selected, 
whether before-after, or year-over-year, these improvements demonstrated a raw increase in pass 
rate for Calculus of (5.6, 12.8, 1.7 and 7.5%), which corresponded to percentage reductions in 
DWF rates of (13, 24, 4 and 17%). For Precalculus, if all instructors are included, raw increases 
in pass rate of (9.4, 6.8, -1.1 and -2.4%) are seen, corresponding to percentage reductions in 
DWF rates of (21, 17, -3 and -8%). If the Precalculus instructors with the highest and lowest pass 
rates are not included in the analysis, raw increases in pass rate of (15.6, 18.1, 3.5 and 6.8%) are 
seen, corresponding to percentage reductions in DWF rates of (32, 38, 10 and 20%). All in all, 
the ALEKS online assessment strategy is an excellent tool for assessing current student 
knowledge so as to assure proper placement in Precalculus and Calculus.  

 

Future Work: 

 

The absence of any definition of success other than a pass rate that is heavily dependent on 
individual instructors makes analysis of any other variable difficult.  Fortunately, longitudinal 
analysis allows other measures.  Success in subsequent courses (although equally skewed by 
instructor variation) is a possible measure.  Another valuable measure will be the ALEKS 
assessments taken by students entering Calculus in spring 2009 and future semesters.   This will 
function as a post test for students who completed Precalculus in the prior term.  Longitudinal 
analysis can allow for recalibration of data discussed in this paper.  It will also provide an 
additional comparison of various cohorts of students after they complete the full sequence of 
Precalculus, Calculus I and Calculus II. 
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Added in Proof, ALEKS and course grades. 

 

During the review period after this paper was submitted, we completed additional analysis of the 
correlation between ALEKS score and final grades at Boise State University.   For each course, 
Calculus and Precalulus,  the data set was scrubbed of all grades except A, B, C or D.  These 
were assigned weights of 4, 3, 2 and 1 respectively, and the least squares regression was 
computed with independent variable ALEKS score and dependent variable final grade.    The 
regression slope was positive but quite small.   However, in both classes we were able to reject 
the null hypothesis, “Slope is 0” with p-value < 0.1.  In other words, there is 90% confidence that 
letter grades are positively correlated with ALEKS score.   The data may be visualized in the 
following histograms.  Math 147 is Precalculus.  Math 170 is Calculus.  
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Improving Students' Learning in Precalculus 

with E-Learning Activities and through Analyses of Student 

Learning Styles and Motivational Characteristics 

 
 
Abstract 

 
During the spring semester of 2008, a quasi-experimental study with 138 students who were 
enrolled in 4 sections of an undergraduate Precalculus class was conducted. The study 
investigated (1) the effectiveness of using a systematically sequenced and managed, self-paced e-
learning program, ALEKS, on academic performance of students with different learning styles, 
and (2) the relationship among the students’ dominant learning styles, motivational 
characteristics, and overall performance in the Precalculus class. Students in the experimental 
group, consisting of 2 of the 4 sections of the course, were assigned to complete ALEKS as 
homework assignments throughout the semester. Students in the control group, consisting of the 
other 2 sections of the course, completed a series of traditional paper-and-pencil homework 
assignments instead. Students’ dominant learning styles were measured by Gregorc Style 
Delineator™. Their motivational orientations and learning strategies were measured with the 
Motivated Strategies for Learning Questionnaire. A pre-test and a post-test, measuring students’ 
entry- and exit-knowledge levels in Precalculus, were administered in both experimental and 
control groups at the beginning and at the end of the semester. This study revealed that 
sequential-type students who used ALEKS outperformed sequential-type students who 
completed handout homework assignments and random-type students who used ALEKS or 
handout homework assignments by one letter grade, although this difference was not statistically 
significant. Several instructional implications related to students’ learning styles, motivational 
characteristics, and academic performance are discussed. Especially, students with a dominant 
abstract-random style may need more tailored learning support to be more successful in a 
Precalculus class.  
 
Theoretical Frameworks 

 
Effective Delivery Media and Methods: E-Learning vs. Traditional 

 
Computer technology has been a paradigm-shifting agent in education since the first computer 
generation of mainframes during the 1960s and 1970s, and throughout the second generation of 
desktop computers and the third generation of the Internet and the World Wide Web during the 
1980s and 1990s.1 E-learning is especially ideal for individualized instruction. In contrast to one-
to-many classroom learning, web technologies can help adjust the pace, sequence, and method of 
instruction to better fit each individual student’s learning behavior and needs. Presently, e-
learning is deeply integrated into school curricula to facilitate learning,2 and a fair amount of 
literature discusses that traditional science, technology, engineering and math (STEM) education 
can be greatly benefited by incorporating e-learning strategies.3, 4, 5, 6, 7 
 
One such e-learning program available in STEM education is ALEKS (Assessment and 
LEarning in Knowledge Spaces).8 This web-based program provides a systematically sequenced 
and managed, self-paced environment, designed to help students improve Math skills. In 
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ALEKS, a variety of different mathematics levels, or courses can be selected, and within each 
course, the curriculum can be customized through selecting/deselecting certain topics. This 
research is focused on the Precalculus curriculum, and consisted of 181 topics in all. Students 
must successfully work through the topics in order to master the content. At any given time, a 
variety of topics may be selected to be learned by the student; however, each topic has a set of 
prerequisite topics that must be mastered before it may be worked on. Thus, for example, a 
student may not proceed to learn a rather complicated trigonometry topic until various 
prerequisite algebra topics within the Precalculus course are mastered. ALEKS provides 
immediate feedback concerning the correctness of the student’s response (see Figure 1). It also 
provides elaborated explanations for any problem. As the student masters the topics, the data are 
added to the ALEKS MyPie, which presents a summary of the student’s current performance 
level and offers more complex topics available for him or her to work through, with the end goal 
being mastery learning of Precalculus (see Figure 2 and Figure 3).  
 
Using an e-learning program such as ALEKS for practicing Math skills implies potentially 
significant advantages over using traditional “pencil and paper” homework assignments. First, 
the student immediately receives diagnosed feedback as to whether he or she is doing the 
problem correctly. Although delayed feedback may be appropriate in certain context because it 
allows students to have sufficient time to solve problems on their own which may in turn 
increase retention of the information,9 it is often important to provide immediate feedback to 
students who are working on a series of drill-and-practice type Math problems so that they are 
able to master each topic before they move on.  
 

 
 
Figure 1. A screen shot of the Learning Mode in ALEKS. [Note: ALEKS product screen shot 
reprinted with permission from ALEKS Corporation.] 
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Figure 2. A screen shot of MyPie in ALEKS: The darkened portion of each pie slice represents 
the topics that the student has mastered and the lighter portion represents what the student has yet 
to learn. [Note: ALEKS product screen shot reprinted with permission from ALEKS 
Corporation.] 
 
 

 
 
Figure 3. A screen shot of Learning Progress in ALEKS. [Note: ALEKS product screen shot 
reprinted with permission from ALEKS Corporation.] 
 
 
Using a program such as ALEKS as homework in lieu of a series of written homework 
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assignments can also reduce the load on the instructors, allowing them to spend more time on 
other responsibilities such as curriculum improvement, student advising, and professional 
development. Therefore, it is important to investigate whether an e-learning program such as 
ALEKS is more effective than, or at least as effective as, traditional pencil and paper homework 
assignment on helping students improve Math skills.  
 
Relationship between Learning Styles and Academic Performance 

 

Individual students in the same classroom may have different learning experiences due to their 
characteristics such as learning styles. For example, some students may learn information in a 
sequential manner more effectively while others tend to approach new information in a more 
random fashion. Therefore, educators should take into account such characteristics of learners in 
order to deliver instruction with more effective media and methods for individual students.  
 
A well-known instrument for measuring learning styles is Gregorc Style DelineatorTM. The Style 
Delineator measures four qualities of concreteness, abstraction, sequence, and randomness in 
people’s perception toward, and ordering of, their world.10 Perceptual abilities are the ways 
through which people obtain information – in a concrete or abstract way. Ordering abilities are 
ways in which people organize information – in a sequential or random way. The instrument 
identifies degrees of abilities with four style types: concrete sequential (CS), abstract sequential 
(AS), concrete random (CR), and abstract random (AR) (see Table 1). Every individual is 
believed to be capable of orienting himself or herself toward all four styles; however, people tend 
to have strong orientation toward one or two, which are viewed as their dominant styles.  
 
Although no one particular learning style is better than another, research has shown strong 
correlation between dominant learning styles and academic performance in certain learning 
subjects. Especially, the sequential-random dimension is shown to be a stronger predictor than 
the concrete-abstract dimension in many areas including STEM.11 For example, research has 
revealed that sequential learners perform significantly better than random learners in computer 
application courses12 and other Science and Math-related courses, while random learners excel in 
Fine Arts courses.13  
 
Table 1. Four Learning Style Types Identified by Gregorc Style Delineator. 
 

Sequential (S) Random (R) 

Concrete (C) Abstract (A) Concrete (C) Abstract (A) 

Concrete-Sequential 
(CS) 

Abstract-Sequential 
(AS) 

Concrete-Random 
(CR) 

Abstract-Random 
(AR) 

 
Motivational Orientations and Learning Strategies  

 
In addition to learning styles, students’ motivational orientations and learning strategies that they 
use also likely influence their learning processes. These characteristics can be measured with the 
Motivated Strategies for Learning Questionnaire (MSLQ), which was developed by a group of 
researchers in the University of Michigan in the early 1990s.14 The instrument is intended to 
measure motivational orientations college students exhibit and learning strategies they use in a 
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college course. The complete MSLQ contains 15 sub-scales, including 6 sub-scales for 
motivational orientations and 9 sub-scales for learning strategies (see Table 2).  
 
The MSLQ has been used in research to help understand the nature of learner motivation and use 
of learning strategies in various subject areas such as statistics, chemistry, technology, social 
studies, and physical education.15 Research has shown that learner characteristics measured by 
the MSLQ have strong associations with their self-regulative learning processes and academic 
performance. Based on research conducted by Pintrich and his colleagues at the University of 
Michigan, the MSLQ has become a standard instrument for conducting research on self-
regulation and motivation. The generally accepted conclusion is that positive motivational 
orientations (e.g., intrinsic goal, high task value, high self-efficacy, and low test anxiety) are 
related to higher levels of self-regulated learning strategies, which in turn are related to better 
academic performance.16 Research conducted with the MSLQ can enable instructors to diagnose 
student characteristics and to develop appropriate instructional strategies to help students 
improve learning.17 
 
Table 2. Sub-Scales of the Motivated Strategies for Learning Questionnaire. 
 

Category Sub-Category Sub-Scale Explanation 

1. Intrinsic goal 
orientation 

Perceiving themselves to 
participate in a task for reasons 
such as challenge, curiosity, and 
mastery.  

2. Extrinsic goal 
orientation 

Perceiving themselves to 
participate in a task for reasons 
such as grades, rewards, 
performance, evaluation by others, 
and competition. 

Motivational 
orientations 
 

Value 
components 
 

3. Task value Learners’ evaluation of how 
interesting, how important, and 
how useful the task is.  

4. Control belief Learners’ beliefs that their efforts 
to learn will result in positive 
outcomes. 

 Expectancy 
components 

5. Self-efficacy for 
learning and 
performance 

A self-appraisal of one’s ability to 
accomplish a task as well as one’s 
confidence in having skills to 
perform that task. 

 Affective 
components 

6. Test anxiety Cognitive thoughts and emotional 
feelings toward taking tests. 

7. Rehearsal Reciting or naming items from a 
list to be learned.  

Learning 
strategies 

Cognitive and 
metacognitive 
strategies 
 

8. Elaboration Building internal connections 
between items to be learned by 
paraphrasing, summarizing, 
creating analogies, and generative 
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note-taking.  

9. Organization Clustering, outlining, and selecting 
the main idea in reading passages. 

10. Critical thinking Applying previous knowledge to 
new situations in order to solve 
problems, reach decisions, or 
make critical evaluations with 
respect to standards of excellence.  

11. Metacognitive 
self-regulation 

The awareness, knowledge, and 
control of cognition. 

12. Time and study 
environment 

Scheduling, planning, and 
managing one’s study time, and 
setting places to do class work.  

13. Effort regulation Students’ ability to control their 
effort and attention in the face of 
distractions and uninteresting 
tasks.  

14. Peer learning Dialoguing and collaborating with 
peers. 

 Resource 
management 
strategies 

15. Help seeking Recognizing needs for help, 
identifying others who can provide 
help, and asking for help.  

 
 
Research to Improve Students’ Learning of Precalculus  

 
Based on the literature review presented above, it was questioned if using an e-learning program 
such as ALEKS, compared to using traditional handout-type homework assignments, could be an 
effective method for helping students learn Precalculus, and whether or not the highly structured 
e-learning environment in ALEKS would benefit students with different learning styles and 
motivational characteristics differently. Therefore, a semester-long study was conducted to 
investigate (1) the effectiveness of using a systematically sequenced and managed, self-paced e-
learning program, ALEKS, on academic performance of students with different learning styles 
(sequential and random), and (2) the relationship among the students’ dominant learning styles, 
their motivational orientations and learning strategies, and their overall academic performance in 
Precalculus. The research findings would help Precalculus instructors select effective media and 
methods for handling homework assignments, address individual students’ needs based on their 
learning styles and motivational characteristics, and improve their learning. The research method 
used in this study is described in the following section.  
 

Method 

 
Research Questions 

 
The study aimed to answer the following two research questions:  
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1. Is the homework activity administered via ALEKS more effective in helping students 
with different learning styles (sequential vs. random) learn Precalculus than is the 
traditional paper-and-pencil handout type homework activity?  

2. If any, what relationship exists among Precalculus students’ dominant learning styles, 
their motivational orientations and learning strategies, and overall academic performance 
in Precalculus?  

 
The first research question was answered by testing the following null hypothesis: 
 

Ho1: There is no significant difference in students’ learning of Precalculus due to the use of 
different types of homework activity (an e-learning program ALEKS vs. traditional 
handout assignments) and the students’ learning styles (sequential vs. random). 

 
The second research question was answered by examining correlation among multiple variables 
measured with Gregorc Style Delineator, the MSLQ, and final points students earned from the 
course.  
 
Subjects 

 
Subjects participated in this study were 138 students enrolled in 4 sections of a Precalculus class 
offered at a medium-size university in the northwestern region of the U.S. during the spring 
semester of 2008. It was a 5-credit course; all classes were held for 50 minutes daily, Monday 
through Friday. The same textbook and course topics were used in all sections. Eighty-three 
students (61%) were male, and 55 students (39%) were female. The average age of the students 
was 22 (SD = 5.32, Min. = 18, and Max. = 55).  
 
Research Design 

 
A quasi-experimental factorial research design was used in this study. The two independent 
variables used for answering the first research question were (1) the type of homework 
assignments administered in the Precalculus class (e-learning vs. handout), and (2) students’ 
dominant learning styles (sequential vs. random). Two female instructors were assigned to teach 
the four sections of the class (each instructor taught two sections). To reduce potential instructor 
bias, one of the two sections taught by the same instructor was randomly assigned to an 
experimental group and the other section was assigned to a control group (see Table 3). Students 
in the experimental group used the systematically sequenced and managed, self-paced e-learning 
program, ALEKS, while students in the control group completed a series of traditional paper-
and-pencil, handout-type homework assignments instead. The dependent variable was students’ 
learning of Precalculus.   
 
Table 3. Experimental and Control Groups Taught by Two Instructors. 
 

 Experimental Group 
using ALEKS homework 

(N =72) 

Control Group 
using handout homework 

(N = 66) 
Instructor A Section 004 (N = 36) Section 003 (N = 29) 
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Instructor B Section 005 (N = 36) Section 006 (N = 37) 

 
 
Research Instruments and Procedure 

 
Students’ Pre- and Post-Knowledge in Precalculus: A pre-test was administered at the beginning 
of the course, and a post-test at the end of the course, and 111 students (80.43%) completed both 
tests. The pre-test contained 11 questions, and the post-test contained 16 questions, 11 of which 
were identical to the ones included in the pre-test and the remaining 5 questions of which were 
also directly related to the topics measured in the pre-test. The scores were recorded in 
percentage of accuracy. 
 
Students’ Learning Styles: To assess students’ dominant learning styles, Gregorc Style 
Delineator was administered during the course, and 104 students (71.33%) completed the 
instrument.  
 
Students’ Motivational Characteristics: Students’ motivational orientations and learning 
strategies were measured with the 15 sub-scales of MSLQ, and 112 students (78.33%) completed 
the instrument.  
 
Homework Assignments via ALEKS vs. Handouts: Students in the experimental group were 
given access to ALEKS to complete their homework assignments. Students were assigned to 
complete 9 intermediate objectives in ALEKS by established deadlines across the semester, and 
the system kept track of the progress. These were selected to align with the 9 chapter completion 
deadlines in the accompanying textbook. At the end of the semester, students in the experimental 
group completed, or mastered 85.0% of the total topics assigned in ALEKS. Students in the 
control group were provided with handout type homework assignments almost daily. Students 
were asked to turn in their homework assignments by the first or second following class meeting. 
The instructors returned the assignments with scores within 2-3 days. Discounting any students 
that received less than 5% on their total homework grade, students in the control group received 
an average score of 79.0% on the handout homework assignments. Although the practice 
questions provided in ALEKS and the questions included in the instructor-developed handout 
homework assignments were not identical, they were directly related to the topics that students 
were learning in the course. In both groups, students were aware that the homework assignments 
were worth 30% of the final grade.  
 
Data Analysis: The data were analyzed with descriptive and inferential statistics using SPSS 17.0 
for Windows.18, 19  
 
The overall research procedure is illustrated in Figure 4.  

P
age 14.711.9



 
Figure 4. Research procedure. 
 
Results 

 
Effects of Using E-Learning vs. Handouts on Students’ Learning with Different Learning Styles  

 

A complete set of pre-test and post-test scores and learning style data were obtained from 98 of 
the 138 participants (71.0%), and cases with any missing values were excluded in the following 
data analysis. Most students (93%) demonstrated one of the four styles as their dominant style, 
and 7 students (7%) showed two or three styles as equally dominant. In those tied cases, 
computer-generated random numbers were used to select a dominant style.13 The most frequently 
identified dominant learning styles among the students were in order, concrete-sequential (N = 
42), abstract-random (N = 24), concrete-random (N = 20), and abstract-sequential (N = 12). 
Among 98 students, 54 of them were sequential-type (CS and AS), and 44 of them were random-
type (CR and AR).  
 
The average pre-test scores among the four groups (the experimental-control groups by 2 
learning style groups) were not significantly different (see Table 4). Therefore, the post-test 
scores were compared to test the group differences due to the type of homework activity. 
 
Table 4. Descriptive Statistics of Pre-Test Scores Between Groups. 
 

Homework Learning Style N Mean SD 

Sequential 25 9.36 9.738 

Random 19 12.00 8.888 

ALEKS 

Total 44 10.50 9.367 

Sequential 29 9.69 8.824 

Random 25 11.32 8.240 

Handout 

Total 54 10.44 8.518 

Total Sequential 54 9.54 9.171 

Pre-test Post-test 

Homework with a systematically-sequenced e-learning program, ALEKS 
 

MSLQ 

MATH 147 Precalculus, Spring 2008 

Homework with a series of manually-graded, handout type assignments 

Experimental 
group 

 
Control group 

Gregorc Style Delineator 
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Random 44 11.61 8.431 

Total 98 10.47 8.862 

 
The null hypothesis set to answer the first research question was: There is no significant 
difference in students’ learning of Precalculus due to the use of different types of homework 
activity (an e-learning program ALEKS vs. traditional handout assignments) and the students’ 
learning styles (sequential vs. random).  

 

A 2 x 2 ANOVA was conducted to test the null hypothesis. The average post-test scores of the 
experimental and control groups were 68.56 (SD = 19.87), and 62.00 (SD = 20.36), respectively. 
The average post-test scores of the sequential and random learner groups were 66.45 (SD = 
20.71) and 63.09 (SD = 19.87), respectively. The two-way ANOVA indicated no significant 
effects due to the types of homework assignments (ALEKS vs. handout homework), F(1, 94) = 
2.05, p > .05, and learning styles (sequential vs. random), F(1, 94) = .81, p > .05, on students’ 
learning of Precalculus; therefore, the first null hypothesis was retained. The interaction effect on 
students’ learning of Precalculus was not significant either, F(1, 94) = 1.55, p > .05. However, it 
is noteworthy that sequential learners who used systematically sequenced and managed ALEKS 
performed a letter grade higher (M = 72.38, SD = 18.40) than sequential learners who used 
handout homework assignments (M = 61.34, SD = 21.53) and random students who used 
ALEKS or handout homework assignments (M = 63.53, SD = 21.10, and M = 62.76, SD = 19.32, 
respectively). The group mean differences are presented in Table 5 and illustrated in Figure 5. 

 
Table 5. Descriptive Statistics of Post-Test Scores Between Groups. 
 

Homework Learning Style N Mean SD 

Sequential 25 72.38 18.401 

Random 19 63.53 21.107 

ALEKS 

Total 44 68.56 19.879 

Sequential 29 61.34 21.534 

Random 25 62.76 19.327 

Handout 

Total 54 62.00 20.362 

Sequential 54 66.45 20.716 

Random 44 63.09 19.878 

Total 

Total 98 64.94 20.309 
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Figure 5. A line graph illustrating the group means of post-test.  
 
Learning Styles, Motivational Characteristics, and Academic Performance in Precalculus  

 
The second research question was: If any, what relationship among Precalculus students’ 
dominant learning styles, their motivational orientations and learning strategies, and overall 
academic performance in Precalculus exists? 
 
The measure of overall academic performance was the final points earned from the homework 
activity (30%), 5 quizzes (50%), and the post-test (20%), which determined the final grade of the 
course. As shown in Table 6, overall, the final points were positively associated with students’ 
intrinsic goal orientation (rho = .208), task value (rho = .230), control belief (rho = .323), self-
efficacy levels (rho = .655), management of time and study environment (rho = .261), and their 
ability to control effort and attention from distraction (rho = .348), and were negatively 
associated with students’ test anxiety (rho = -.326) and seeking peer learning (rho = -.282).  
 
Table 6. Correlations Among Learning Styles, Motivation, and Academic Performance. 
 

Category Sub-Scale CS AS CR AR Final Points 

Motivational  Intrinsic Goal Orientation .025 .016 .162 -.183 .208* 

Orientations Extrinsic Goal Orientation .113 .059 -.175 -.038 .135 

 Task Value .148 .232* .077 -.385** .230* 

 Control Belief .084 .102 .084 -.187 .323** 
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 Self-Efficacy .107 .160 .055 -.253* .655** 

 Test Anxiety -.104 .034 -.145 .172 -.326** 

Learning Strategies Rehearsal -.045 -.105 .097 -.008 .096 

 Elaboration .002 -.009 .036 -.032 -.016 

 Organization -.015 .024 -.004 -.023 .064 

 Critical Thinking -.133 .027 .133 -.003 -.021 

 Metacongnitive Self-Regulation .051 -.011 -.043 -.025 .151 

 Time and Study Environment .184 -.021 -.075 -.132 .261* 

 Effort Regulation .200 .090 -.107 -.172 .348** 

 Peer Learning -.008 -.101 .010 .072 -.282** 

 Help Seeking .003 -.075 -.130 .121 -.198 

Academic  

Performance 
Final Points .178 .142 -.062 -.247* 1.000 

* Correlation is significant at the 0.05 level (2-tailed). 
** Correlation is significant at the 0.01 level (2-tailed). 
Listwise N = 96 

 
 

Only a few small degrees of correlations were found among students’ dominant learning styles, 
their motivational orientations and learning strategies, and final points earned from the course. 
Task value is about the person’s evaluation about how important, how useful, and how 
interesting the task is. A positive correlation of the task value scores to the abstract-sequential 
scores (rho = .232) confirms that AS-strong students tend to think that it is important and 
interesting to learn Precalculus that requires abstract-sequential thinking. On the other hand, a 
notable observation was that students’ abstract-random scores were negatively correlated with 
task value (rho = -.385), self-efficacy (rho = -.253), and the final points they earned from the 
course (rho = -.247). It can be interpreted in two ways: 1. AR-strong students tend to think that 
learning Precalculus is not interesting or they are not good at learning Precalculus, and they tend 
to produce lower final points, or 2. AR-weak students tend to think that learning Precalculus is 
interesting or they are good at learning Precalculus, and they tend to produce higher final points. 
The first interpretation seems to be more plausible with the sample used in this study, because as 
shown in Figure 6, AR-dominant students performed a letter grade lower than other learning 
style groups. CS-dominant students scored highest on the final points (M = 78.68, SD = 12.75) 
while AR-dominant students scored lowest (M = 68.65, SD = 17.18). However, the mean 
differences in the final points shown by their dominant learning styles were not significant at the 
.05 level. Nonetheless, attention should be paid to this trend associated between AR-dominant 
students and their tendency toward learning Precalculus. 
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Figure 6. A comparison of average final points by students’ dominant learning styles. 
 

Conclusions 

 
Discussion 

 
The purpose of this study was to investigate (1) the effectiveness of using a systematically 
sequenced and managed, self-paced e-learning program, ALEKS, on academic performance of 
students with different learning styles in a undergraduate Precalculus class, and (2) the 
relationship among the students’ dominant learning styles, their motivational orientations and 
learning strategies, and overall academic performance in the Precalculus class. The study 
revealed that the use of ALEKS and the use of handout homework assignments did not 
contribute to making statistically significant differences in students’ learning of Precalculus. 
However, a notable trend was observed that sequential students who used ALEKS performed a 
letter grade higher than sequential learners who used handout homework assignments or random 
students who used either ALEKS or handout homework assignments.  
 
Interpretations of the above findings are as follows. Learning styles indicate people’s abilities in 
perceiving information and their preferences as to how the information should be arranged.10 
When the learning environment is designed to support their dominant abilities and preferences, 
learners tend to find it more enjoyable and perhaps perform better as a result. Therefore, it is 
plausible that ALEKS which is a systematically sequenced and managed learning environment 
could be more appealing to sequential learners than it was to random learners; and as a 
consequence, sequential learners who used ALEKS outperformed other groups of learners by 
one letter grade. However, this study also revealed that random students, especially AR-
dominant students, tend not to value the task of learning Precalculus, tend to have less self-
efficacy in succeeding in the Precalculus class, and in fact, did not perform as well as other 
groups of learners. Therefore, another possible interpretation is that it is not just because the 
ALEKS learning environment supported sequential-type students more and random-type 
students less, but it could be also because the learning subject matter was more appealing to 
sequential students and less to random students. This implies that learning is a product of triadic 
interactions among learners’ characteristics, the learning environments, and the learning subjects 
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(see Figure 7). 

  
Figure 7. Triadic interactions among learners, learning environment, and learning subject. 
 
This study revealed that the use of ALEKS was not significantly better or worse than the use of 
traditional handout homework assignments. However, as expected, cost-effectiveness was a 
benefit of using ALEKS for handling homework assignments. The two instructors indicated that 
it took about 5 hours per week to manually administer the handout homework assignments, 
which means that the use of ALEKS freed up 5 hours of their time per week. It implies that an e-
learning program such as ALEKS could be substituted for a traditional, time-consuming method 
for handling homework assignments, allowing instructors to engage in other responsibilities such 
as curriculum improvement, student advising, and research. However, it should not be over-
generalized that e-learning is more effective than instructor-facilitated learning, leading to a 
conclusion that the entire Precalculus course be taught via self-paced e-learning.  
 
Another interesting observation by the instructors was low class attendance in the two sections of 
the experimental group that used ALEKS (about 50% attendance), while the students in the 
control group maintained high class attendance throughout the course (80-90% attendance) 
although it varied day by day in both cases. It is unknown whether the research results would 
have been different if the students in the experimental group had also kept as high class 
attendance levels as the students in the control group. 
 
Limitations of the study 

 
Several limitations exist in this quasi-experimental study. First, it was not feasible to randomly 
select a sample from the population; therefore, a convenience sample was used. Although two 
sections taught by the same instructor were randomly assigned to either an experimental group or 
a control group, potential instructor bias is still a threat to external validity of the study. Also, as 
a common condition in most educational research settings, the students were asked to participate 
in the study on a voluntary basis, and complete data obtained from only 71% of the sample were 
used for data analysis; therefore, the findings of this study should be generalized with some 
caution. A few threats to internal validity existed, as there were some factors related to the use of 
ALEKS and handout homework assignments that could not be controlled. For example, by 
nature, homework assignments, whether they were administered via ALEKS or handouts, were 
completed in uncontrolled environments; therefore, other confounding factors could interact with 
the treatment. Although students who used ALEKS might have enjoyed more flexible deadlines 
to meet, it is also possible that they had less access to the treatment (the use of ALEKS) as it 
required a computer connected to the Internet, compared to students who used simple handouts.  
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Recommendations 

 
Based on the findings of this study, the following recommendations are provided to educators 
who teach Precalculus or related topics: 
 
1. Measure students’ learning styles in the beginning of the course. The information would 

enable the instructors to be aware of their students’ potential strengths and weaknesses in 
performing in classroom and to tailor their instructional strategies toward the individual 
students with different needs. For example, random students who are studying a subject that 
demands sequential thinking such as Math may need more attention from the instructors.  

2. Have students be aware of their dominant learning styles and motivational characteristics. It 
can help them self-monitor their learning behaviors and give them opportunities to self-
correct ineffective study habits, and develop more effective learning behaviors. 

3. Have instructors be aware of their own dominant learning styles and reflect on their preferred 
approaches for teaching their subjects. Instructors also have their dominant learning styles 
which are often their preferred teaching styles.20 For example, CS-dominant instructors may 
use CS-friendly strategies in their courses. Some common behaviors of CS-dominant people 
include being adept at following precise step-by-step directions for completing assignments 
and being good at meeting deadlines. A learning environment with such expectations from 
the instructor may not appeal to AR students, who like group discussions and collaborative 
work and tend not to pay attention to meeting deadlines as much.21  

4. Conduct a more rigorous experimental study in which a sample is randomly drawn from the 
population. Use a large sample. Measure students’ learning styles first to group them into the 
four learning style groups, and then randomly assign members of each group into an 
experimental or control group. That way, the findings of the study would provide more 
statistical power and generalizability.  
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The Idaho Science Talent Expansion Program: 

Improving Freshmen Retention for STEM Majors 
 
 

 
Abstract 

 
During summer of 2010, we conducted a series of freshman orientation programs that were held 
for new science, technology, engineering and mathematics (STEM) majors at Boise State 
University.  Approximately 320 students were advised in this manner, during seven summer 
orientation sessions. This was a significant change from previous years, which used a college-
specific approach to advising, thereby limiting various retention programs and opportunities 
designed and promoted by the College of Engineering to engineering majors. The motivation for 
these changes was a Science Talent Expansion Program award from the National Science 
Foundation, and the fact that the retention rates for freshmen engineering majors is 
approximately 10% higher as compared with science and mathematics majors. The grant 
proposed to (1) integrate the science and mathematics majors with the engineering majors during 
summer orientation, (2) expand student learning community offerings to STEM majors, (3)  
create a General Sciences course for STEM students who are underprepared in mathematics, and 
(4) offer an elective, non-credit bearing mathematics online review course, free of charge, to 
students entering the university in STEM majors. An underlying and important rationale for 
widening the advisement base to include all STEM majors in an inclusive manner is the fact that 
many freshmen are unsure of their major. Therefore orientation materials were prepared that 
emphasized the commonalities between majors and the underpinning courses and their 
prerequisites. The results of these four activities, to date, will be presented together with strategy 
revisions planned for summer 2011. 

 
Introduction 
  
Boise State University, with the largest enrollment and highest academic admission standards 
among Idaho’s public universities, is the state’s comprehensive metropolitan research university. 
The university has been experiencing, year after year, exceptional growth to meet the needs of 
the area’s emerging technology economy. The Boise metropolitan area has recently earned 
national Top 10 rankings for overall patents, high-tech output, business and career climate, 
livability, and engineers per capita.1-5 

 
The College of Engineering was formed in 1997 as a result of the university’s steady growth and 
diversification coupled with the state’s technology boom. Since its inception, the college has 
grown explosively with more than 60 new faculty, and a 16th place U.S. News & World Report 
2010 ranking among public masters level engineering colleges. Since 2000, the college has 
added one doctorate, six masters and one new undergraduate program, Materials Science and 
Engineering (2005). In the College of Arts and Sciences, a new masters program in Mathematics 
was added in 2005, a doctoral programs in Geosciences was added in 2006, and a masters 
program in Chemistry began in 2010. Two additional doctoral programs are in progress at the 
university, in Biomolecular Sciences and in Materials Science and Engineering. 
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The undergraduate degree offerings in 
STEM majors are listed in Table 1. The 
undergraduate enrollment trend in STEM 
majors at Boise Stateuniversity since 2004 is 
shown in Figure 1. Geosciences consists of 
two majors, Geology and Geophysics, which 
are grouped together. Mathematics 
comprises Applied Mathematics (a B.S. 
degree), the Bachelors of Arts in 
Mathematics and also the B.S. in 
Mathematics. There has been a positive trend 
in enrollment for a number of years.  
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Figure 1: FTE Fall Enrollment 
 

Table 1: B.S. STEM degree offerings 
College of Engineering  College of Arts & 

Sciences 
Civil Engineering Biology 
Computer Science Chemistry 

Electrical Engineering Geology, 
Geophysics 

Materials Science and 
Engineering 

Mathematics 

Mechanical Engineering Physics 
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An analysis of STEM degrees awarded shows a total number of Boise State University graduates 
that has varied between a low of 161 in 2004-2005, and a high of just over 200, see Table 2. 
 

Table 2: STEM graduates, six-year trend 
Academic Year 2004 2005 2006 2007 2008 2009 

Engineering and Computer Science 96 97 112 91 111 106 
Science and Mathematics 65 106 89 73 78 95 
Total STEM Graduates  161 203 201 164 189 201 

 
One of the program outcomes of the Boise State University National Science Foundation Idaho 
Science Talent Expansion Program (STEP) is to increase the first year retention level of first-
time STEM freshmen from a weighted average of 57% to a target level of 70%. This level was 
thought to be a good balance between what had been already achieved by COEN (63.3% in 
2007-8) and what might be realistically achieved in a five-year time frame, recognizing that not 
all students will be retained in any major. This outcome was selected as a step along the path 
toward increasing the number of STEM undergraduate degrees conferred, which is the program’s 
overarching objective. The focused attention on first year retention is based on the fact that the 
first-time full time freshman to sophomore retention for majors within the College of 
Engineering (COEN) is approximately 10% higher than the retention for STEM majors in the 
College of Arts & Sciences (COAS), see Table 3. 
 

 
Although a first-time full time freshman to sophomore retention level of 60% is not tremendous, 
this higher level achieved by the engineering majors at Boise State University is likely a result of 
a set of initiatives that were put in place between 2002 and 2007 as part of $1M in funding from 
the William and Flora Hewlett Foundation’s Engineering Schools of the West Initiative. This 

Table 3: First-time full time freshman to sophomore retention 

Year Group Number 
in group 

% 
retained 
at 
university 

% retained in 
any STEM 
major 

% retained in original 
STEM group 
 (COEN or COAS) 

2005-6 
All majors 1755 63.4 NA NA 

COEN 163 66.9 58.3 57.1 
COAS 77 68.8 51.9 46.8 

2006-7 
All majors 1867 63.8 NA NA 

COEN 174 71.8 58.0 55.7 
COAS 97 67.0 47.4 46.4 

2007-8 
All majors 1900 66.4 NA NA 

COEN 215 75.8 63.3 60.0 
COAS 90 71.1 52.2 51.1 

Average 
over 
three 
years 

All majors 1841 64.6 NA NA 
COEN 184 71.9 60.1 57.8 

COAS 88 68.9 50.4 48.1 
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funding resulted in institutionalized practices within the College of Engineering, that comprise 
part of the basis for the STEP program’s target outcome of increasing the first-time freshman to 
sophomore retention. 7-11 These practices include conducting or creating for all STEM majors: 
(1) summer orientation with a high level of engagement by faculty, (2) freshman learning 
communities, (3) coursework for STEM majors that are not yet calculus ready (and therefore not 
qualified for chemistry, or physics or engineering classes required by their majors) and (4) 
mathematics preparation and placement. 

 
This paper reports on these program initiatives and discusses how they were expanded to include 
all STEM majors as well as on strategy revisions planned for summer 2011. 
 
Results and Discussion 
 
1. Summer orientation 
 
For the first time, all incoming first year Boise State students majoring in the STEM disciplines 
were oriented to their curriculum requirements as a group during summer orientation sessions.  
This was a substantial change over prior orientation sessions which segregated students by 
college. This provided a framework which emphasized the commonality of the STEM 
curriculum between engineering, mathematics and science majors in lower division courses and 
the relative ease of moving between these majors in the freshman/sophomore years. This is 
important because many freshmen are unsure of their major – in engineering alone, fall 2010, 
there are 125 “undecided engineering” undergraduate students, comprising 11.3% of the 
engineering and computer science undergraduate students. All students were advised of the 
STEM core courses they must take in an overview presentation.  Next, students were categorized 
by specific discipline for individualized course advising using peer advisors and STEM faculty 
(32 advisors over the summer).  The objective was to help the students identify as a STEM 
major, begin connecting them with an advisor, and to identify the STEP project coordinator and 
other resources available to them. 
 
The advisors assisted students in selecting the appropriate math course, promoted the use of 
ALEKS, a mathematics online learning module (described in part 4), and encouraged enrollment 
in Student Learning Communities (SLCs). To continue support and assistance, advisors 
accompanied the students to a computer lab to complete online course registration.  Over 323 
STEM students were advised and registered in seven sessions in the summer of 2010.   
To emphasize cross disciplinary cooperation and build support, we presented a salary chart for 
STEM majors that grouped engineering salaries instead of categorizing them by specific 
discipline (chemical, civil, electrical, etc.).  This communicates that other STEM fields are 
attractive options to students and faculty rather than the stark message: “engineering has seven of 
the ten top salaries.”  This is important in building university, cross-college and discipline 
cooperation because too often engineering is presented as the only high income career choice and 
may alienate faculty from math and the sciences.  Table 4, below, depicts how the salary 
information was presented in the large group student briefing. 
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Table 4: Ten Highest Paying College Majors12 
 

Major Average first year 
salary 

Average mid-
career salary 

Engineering $59,000  $101,000  

Economics $50,200  $101,000  

Physics $51,100  $98,800  

Computer Science $56,400  $97,400  

Statistics $48,600  $94,500  

Biochemistry $41,700  $94,200  

Mathematics $47,000  $93,600  

Construction 
Management 

$53,400  $89,600  

Information Systems $51,400  $87,000  

Geology $45,000  $84,200  

 
Lessons learned:  The initial overview presentation contained more information than the students 
could absorb on day two of orientation.  The time allotted for advising and registration of the 
freshmen did not provide sufficient time for the advisors to emphasize our new academic support 
tools including Student Learning Communities, the GenSci (General Science) class for pre-
calculus ready STEM majors, and ALEKS; nor did the STEM students remain in a group when 
they moved to computer labs which made it difficult for the advisors to respond to their 
questions in a timely fashion. 
 
New actions: We have requested time on day one in summer 2011 to do the majority of advising 
followed by a time on day two to address problems such as missing course placement data (SAT 
scores, AP credits) or other student records.  We are also developing a training tool to educate 
our advisors about our STEM academic support tools, tips for positioning the tools and better 
articulating the benefits so they are able to succinctly advise the students. Advisors will attend a 
short training session on the registration system from the student perspective to enhance their 
skills on the system. We have requested and confirmed a dedicated computer lab for all STEM 
majors during registration to allow advisors to address registration issues in real time. Finally, 
increased communication between summer orientation and the Registrar’s office is planned, so 
as to ensure students’ ACT, SAT and AP scores are in the system prior to course registration. 
This will ensure that the system recognizes that the student has achieved appropriate 
prerequisites for the critical math and science courses in which they need to enroll. 
 
2. Freshman learning communities 
 
STEM major focused Student Learning Communities (SLCs) based on math learning readiness 
for first term freshman are designed to encourage a diverse group of learners to become engaged 
with STEM faculty and other SLC members. This practice has worked well for the engineering 
majors and has now been expanded to all STEM majors. Additional benefits to SLCs are 1) 
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experienced faculty who are committed to student success are assigned to these classes, and 2) 
SLCs provide guaranteed enrollment in high demand core science courses (which often become 
oversubscribed) and provide a pool of potential study group members. Eleven sections of 
academic STEM and two engineering SLCs were formed for Fall 2010 entering freshman and 
sophomore continuing students to foster connections, form study groups, and learn core 
knowledge. Over 204 students representing all 11 STEM disciplines were enrolled.   
 
We distributed the listings of these SLCs to our STEM advisors prior to beginning summer 
orientation for incoming new and transfer STEM students. At summer orientation, we used time 
during our STEM orientation presentations to explain and emphasize the advantages to students 
of enrolling in SLCs.  Following the presentations, students were advised in groups related to 
their disciplines; in these discussions the benefits of enrolling in SLCs were again emphasized.  
In addition, we pointed out that in many cases, the only path to registering for STEM service 
classes such as mathematics, chemistry, and physics was to select a SLC.  Finally, during the 
actual registration portion of orientation, when students were confronted with the reality of 
selecting the classes, we once more emphasized that perhaps the best (and sometimes only 
option) to register for their required classes was to select an SLC which contained the classes 
they needed. 
 
The structure of the first year SLCs is listed in Table 5. For Spring 2011, we designed seven 
sections of SLCs and are updating advisors of the availability.  We have been particularly aware 
of the rapid enrollment in the STEM calculus sequence, and calculus based chemistry and 
physics which nine of the 11 STEM majors must take. 
  
Table 5:  First Year Fall Student Learning Communities (SLC)  

Level 

Math 
Course 
Name 

Math 
Credits 

GenSci 
Credits 

Suggested 
General 
Education 
Course 

Total LC 
Credits 

  LCs 
(section 
size 20-
25) 

C2 Calc II 4 5 -- 9 1 
C1 Calc I 4 4 Comm 11 2 
PC PreCalc 5 2 Comm 10 2 
PC PreCalc 5 -- Comm 8 2 
A-II Alg. II 4 2 Comm 9 2 
A-II Alg. II 4 -- Comm 7 2 

 
Lessons learned: Although engineering advisors understood and supported SLCs, other STEM 
advisors were unfamiliar with them and did not fully realize the advantages to the students.  We 
included a communications (Comm) course, which is required for engineering majors but a 
social science elective for other STEM majors, so students did not perceive that course to be 
required. Demand for SLCs containing calculus, chemistry and physics exceeds course 
availability.  Science courses with labs do not have wait lists; this is due to limitations in the 
software system used by the university which makes it difficult to quantify the additional slots 
needed. Course additions are tightly controlled due to resource limitations that include both 
funding and difficulty in securing qualified instructors. 
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New actions: We are developing a SLC tutorial with tips for advisors to ensure they understand 
the benefits for the students.  We will structure the SLCs with greater care to ensure we provide 
the most benefit from the offerings. We are developing guidelines for instructors on SLCs, which 
contains tips such as encouraging them to stagger the course test dates between classes in the 
SLC.  The need for more seats and the issues associated with not really knowing what the unmet 
need for math and science course seats has been brought to the attention of the appropriate 
people at the university. Measures are being taken to step ahead of the need to avoid shortfalls in 
math and science course offerings.  
 
3. Coursework for STEM students who are not ready for calculus. 
 
To improve STEM freshman retention by increasing engagement, as well as improving scientific 
reasoning skills, GenSci 197 (Scientific Thought and Reasoning) was developed for the students 
who are not ready for calculus. From an effort to understand the STEM population at Boise State 
University, and where to focus our efforts, an analysis was done of first time STEM freshmen 
who first enrolled in fall 2007, 2008 or 2009. The student math level enrollment shows that the 
majority of STEM students, 65%, enroll in math courses at levels below calculus. These 567 
students show a STEM major retention level of 72%, one year later. By contrast, 35% of students 
enroll in math courses at calculus level or higher, and are retained in STEM majors one year later 
at a level of 84%. This indicates that the students not ready for calculus have a greater chance of 
leaving their programs. Thus, attention and grant resources were directed toward this majority of  
students who have selected a STEM major but who are not mathematically prepared for calculus. 
In an effort to improve student engagement by giving them a science class to take and at the 
same time improve their reasoning skills, GenSci 197 was developed and offered in fall, 2010. 
 
The goal of the Scientific Thought and Reasoning class is to improve students’ scientific 
reasoning skills through explicit instruction in the areas of the nature of science, observations vs. 
inference, measurements including precision and accuracy, unit conversion and analysis, 
identification and control of variables, hypothetico-deductive reasoning, probability, interpreting 
graphical and tabular data, and lab report writing. This course is based on a course at Wright 
State University (SM101), developed and taught by Dr. Kathy Koenig, which has succeeded in 
increasing reasoning skills of students.13 We are using the same workbook. 
 
The goals of many STEM courses include problem solving procedures. It has been suggested 
that Piagetian Formal reasoning skills are required for solving problems.14 Piagetian reasoning is 
a developmental theory which describes that students start as children with less sophisticated 
reasoning skills and develop toward Formal reasoning. The aspects of Formal Operational 
reasoning as suggested by Piaget are combinatorial reasoning, separation and control of 
variables, proportional reasoning, probabilistic reasoning, correlational reasoning, and 
hypothetico-deductive reasoning. When some of the formal schemes are absent or not fully 
developed, they may only be applied to familiar situations and not systematically. 
 
“One can be said to be reasoning at the Formal operational level when Formal operational 
schemes have become explicit and useful as general problem solving procedures.”14  
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On the basis of this developmental reasoning theory, it has been suggested that classroom 
activities may play a significant role in the development of student reasoning.15 From the results 
of their study to enhance the development of student reasoning, Karplus and his team devised a 
strategy referred to as a Learning Cycle.15 This learning cycle consists of an exploratory activity 
upon which later conceptual understanding can be built, referred to as the Exploration phase, 
which confronts the student with questions that cannot be answered with their familiar pattern of 
reasoning. The Invention phase starts with the students speculating about possible explanations 
for the questions raised by the exploration in order to develop a new reasoning pattern. During 
the last phase, Application, the students apply the new reasoning pattern to additional examples. 
All three of these phases contribute to the development of formal reasoning skills. The text used 
for GenSci 197 utilizes this Learning Cycle, which is evident in the sequence of the workbook 
activities and the experiments performed.13 Students working through the course activities are 
placed in situations where formal reasoning is purposefully being encouraged. 
  
The research method used and preliminary results obtained from the first semester’s offering are 
presented below. 
 
Method 
Research Question: The study aimed to begin to answer the following research question: What is 
the effect of explicit reasoning instruction upon student scientific reasoning? This research 
question was answered by testing the following null hypothesis:   

H01: There is no statistically significant change in student reasoning after engaging in 
explicit reasoning instruction. 

 
Population: Subjects participating in this study were 55 first semester freshman STEM students 
enrolled in two sections of Scientific Thought and Reasoning during the fall semester of 2010. It 
was a two credit class which met twice a week for 50 minute classes. The same textbook and 
course topics were used for both sections. 43 students (78%) were male, and 12 students were 
female. This group of students were not calculus-ready, with 23 students entering intermediate 
algebra and 32 students entering pre-calculus. 
 
Research Design: A quasi-experimental pre-test post-test experiment design was planned for this 
experiment. The independent variable is the direct instruction in reasoning, and the control 
variable is the student scores on the Lawson’s Test of Scientific Reasoning. The change in 
students reasoning may thus be measured and tested for statistical significance. Also the gain of 
the treatment students will be compared to published reasoning gains.  
 
Instrument and procedures: The Lawson’s test of Scientific Reasoning16 is a well accepted and 
reliable assessment tool for measuring student reasoning.17 While the Lawson’s test covers all 
aspects of Piagetian reasoning, since our course only covered Control of Variables, Probabilistic 
Thinking, and Hypothetico-deductive reasoning, only these aspects were included in the scores 
for our students. A pretest was administered at the beginning of the course and a post-test at the 
end of the course. Of the 55 students in the course, 43 students (78%) completed both tests. The 
data was analyzed using SPSS 17.0 for Windows. 
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Results: A paired samples t test was conducted to evaluate to see if there is a relationship 
between the amounts of explicit reasoning instruction that STEM students receive and the 
students’ scientific reasoning. For this test the student scores on aspects of interest were used. 
The test results indicated that the mean post-test score (M=9.95, SD=2.72) was statistically 
significantly greater that the pre-test score (M=8.86, SD=3.04), with t(42)=-2.85, p=0.007. To 
estimate the practical significance of this increase Cohen’s d was calculated, d=0.38. This result 
supports the research hypothesis and the prediction. In a post-hoc analysis the items were 
analyzed by reasoning aspect to see if the students did gain reasoning ability in any one aspect. 
The students showed a statistically significant gain in Control of Variables, t(42)=-2.85, p<0.001. 
Cohen’s d was calculated where d=0.58. The students also showed a statistically significant gain 
in Probabilistic Thinking, t(42)=-2.86, p,0.001. Cohen’s d was calculated where d=0.37. There 
was no statistically significant difference for the aspect of hypothetico- deductive reasoning. 
Figure 2 and Table 6 show the student results for the total score on aspects of interest and the 
student scores for Control of variables. 
 
Table 6: Descriptive statistics 
of pre- and post-test scores 

  mean SD 
Pre-test 8.86 3.04 
Post-test 9.95 2.72 

 
 

 
Figure 2:  Student total scores, aspects of interest 
 P
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Finally, it is noted that studies indicate a small change in student reasoning scores for students 
taking one semester of typical science classes. Maloney showed that students in a physics class 
can show an average gain as small as 0.31 on the Lawson’s test.17 In comparison the students in 
Gensci 197 showed an average gain of 1.1. 
 
Discussion: The analysis of the data supports the hypothesis that there is a relationship between 
the amounts of explicit reasoning instruction that STEM students receive and the students’ 
scientific reasoning. When students were given a semester’s worth of explicit instruction in 
scientific reasoning their scores on a reasoning test increased. The effect size for this overall 
increase was small (d=.38), indicating a small gain in practical terms. This is a disappointing 
result. All aspects of the course will be reviewed in an effort to increase the gain in future 
sections of this course. 
 
The item analysis indicated a larger practical gain (d=.58) for the aspect of control of variables. 
This is not surprising as a significant portion of the course dealt with this topic, and the students 
had multiple tests covering this topic. It is noted that the hypothetico-deductive reasoning did not 
increase, even though this was covered significantly during the course. Looking back at the 
theory behind hypothetico-deductive reasoning it is noted that Fuller et. al.14 indicate that 
hypothetico-deductive reasoning uses all aspects of scientific reasoning in concert. Since in our 
course we did not have time to address proportional thinking, combinatorial or correlational 
thinking, it is possible that the lack of these reasoning skills prevented the students from 
excelling at hypothetico-deductive reasoning. In the future we plan to increase the contact time 
of this course from 2 hours/week to 4 hours/week, so that we may include proportional, 
combinatorial, and correlational thinking.  
 
The preliminary results of this study show  a practical gain in the aspects of student reasoning 
that were taught. The trial run of Gensci 197 focused primarily on control of variables, and 
yielded a student gain in this aspect of reasoning. This suggests that the class has the potential to 
improve student reasoning. We are suggesting that future offerings on Gensci 197 include more 
time to allow other aspects of reasoning to be addressed. The correlation between improved 
student reasoning and retention will be explored in a future longitudinal study. 
 
Lessons learned; limitations: Several limitations exist in this study. There is a need for a control 
group, in order to conduct a complete experiment where the control variable of reasoning 
instruction can be explored. Also, as is a common practice in educational research settings, 
students were asked to participate in the study on a voluntary basis. Some students did not 
complete both the pre-test and the post-test. Of the 55 students in the course, complete data was 
obtained from 43 (78%) of the students and used for data analysis. Therefore the findings should 
be generalized with some caution. 
 
4. Mathematics preparation/placement 
 
It is well understood how critical the role of mathematics is to the success of STEM majors. A 
number of efforts have been undertaken at our institution to investigate ways to use mathematics 
placement and instruction to help STEM students succeed.8,10,11 Some of these efforts have 
included using the online mathematics learning system, ALEKS, marketed through 
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www.aleks.com. These efforts over the past several years have included using the system as a 
math placement tool (since abandoned), using ALEKS as part of an introductory engineering 
course, using ALEKS as part of or even all the homework for Precalculus classes, and requiring 
that students who enroll in either Precalculus or Calculus I, demonstrate a minimum competency 
defined by mastery of a percentage of “knowledge space” in the ALEKS course termed: 
“Preparation for Calculus.” This percentage is presently enforced at 40% for Precalculus and at 
70% for Calculus I. The method of enforcement is that it is treated as a take home exam 
(unproctored, repeatable, and due during the first week of class), worth approximately 10% of a 
student’s total course grade. 
 
This paper reports on a new initiative that commenced in Fall, 2010 as a result of the NSF STEP 
grant. The grant budgeted for the purchase of online learning licenses from ALEKS, Inc.,18 as 
well as for bookstore awards. The licenses were for 77 days of learning, a $47 value. The intent 
was to use summer orientation as an opportunity to inform students of these mathematics 
learning subscriptions, and to incentivize student participation in embarking upon this personal 
review/learning effort by advertising that students were eligible to be considered for $100 
bookstore awards if they achieved 15 hours or more of active online learning. 
 
It was hoped that students would use the free access to begin work on ALEKS shortly after their 
orientation sessions and continue to work across the summer.   The expectation was that students 
who put in significant time would be more likely to succeed in fall semester math courses.  
 
Results: Over 75 students took advantage of the free subscriptions.  In some cases students used 
both the “Preparation for Precalculus” and “Preparation for Calculus” ALEKS courses to build 
their skills for entering fall math courses.  Table 7 differentiates the students who were enrolled 
only in Preparation for Precalculus with a cell color that is blue. Because a specific assessment 
score was a partial requirement for taking MATH 147 and 170, many students only chose to use 
the learning tool until they obtained the target score.  Table 7 presents summary data showing the 
time spent by each student who used a free subscription and spent two or more hours learning 
mathematics online. The grade each student earned in their subsequent university math course is 
shown in conjunction with the university math course in which they enrolled. MATH 25 is 
Elementary Algebra; MATH 108 is Intermediate Algebra, MATH 147 is Precalculus, MATH 
170 is Calculus I and MATH 175 is Calculus II.  
 
The publicized bookstore award eligibility criterion was spending 15 or more hours online 
learning ALEKS. Of particular note are the 12 students who did so, indicated in bold in Table 7. 
All these students passed their mathematics class; 3 earned grades of A, 7 earned grades of B, 
and 2 earned grades of C. The average amount of time these students spent was 30.4 h, with a 
standard deviation of 8.0 h. Of these students, 7 of them completed 100% of the knowledge 
space for the course they enrolled in (6 were in Prep for Calc, and 1 in Prep for PreCalc, which is 
the suitable course for those who enroll in Intermediate Algebra, Math 108). 
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Table 7: Hours spent in math preparation in online learning (ALEKS) with grade earned in subsequent 
math class 

gr
ad

e  Math course 
25  108  147  170  175 

           

Co
m
bi
ne

d 
A
LE
KS

 p
re
ps
 

co
ur
se
s 

A  4.6 7.7 26.1 18.2 11.6 7.7       11.3 11.8 13.4 35.4       

A‐          10.6 10.7                       

B+    4.2     38.3         3.2 10.4           

B    10.6 18             2.3 4.5 6.1 8.6 30.2 32.1     

B‐                    26.4 26.8 43.1           

C          3.5 6.9 7.3   2.3 2.7 3.6 29.3         

C‐                    5.5 12.4 40.5           

D          2.7 3.9                       

F          2 2.2 2.5 3.3 11.9 2 8.6         9.2 9.9 

 
 
Lessons Learned: Summer orientation sessions are crowded with information and hectic.  In the 
scramble to register for classes, advising on how to use ALEKS was not always clearly 
communicated.  Data on the start date and total hours worked indicate that a significant number 
of students did not use the software in the manner that we had intended.  This is also reflected in 
the numerous queries about how to use ALEKS that the Math Department received in the last 
few weeks of the summer.  It appears that both better advising techniques and stronger incentives 
will be needed. 
 
New Actions: (1) Restructure orientation sessions as described in Section 1.  The two day format 
should reduce the concentration of information flowing at students in the short advising window 
currently available.   It is also possible that students could use computer facilities on campus to 
begin their ALEKS work under our supervision. (2) Track our success rate for inducing 
appropriate use of ALEKS.   Collect data on how many students are advised about ALEKS in 
summer orientation and compare that number to the number that end up using the software for a 
suitable amount of learning over the summer. (3) Add incentives; showcase student success.  
Grant funds do not allow for more than the free license and the bookstore award.  However we 
can provide data on the performance of students who used ALEKS appropriately in Summer 
2010.  We also plan to feature profiles, with permission, of certain students on the Idaho STEP 
website with their photos and ‘words of wisdom’ they would like to pass along to future 
students. (4) Begin a longitudinal study of the performance of the students who used ALEKS 
appropriately in Summer 2010.  As longitudinal data builds this may provide us with stronger 
evidence that can be used to incentivize students in Summer 2011 and future years. (5) Add a 
third group of students for comparison.  The current protocol is to offer the ALEKS software to 
all declared STEM majors passing though orientation.   The result is that all STEM majors self 
select into those who use the software appropriately and those who do not.  The protocol can be 
modified to collect performance data on students who are not STEM majors.  
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Summary 
 
Retention of qualified students at all universities is a common goal, one of particular importance 
as universities strive to maximize efficiency in face of reduced resources. This study reported on 
four program activities that were targeted toward first-year success for undergraduate STEM 
majors. These pilot studies have resulted in numerous lessons learned that are informing this 
program’s second year activities. Creating a STEM freshman learning cohort instead of one that 
is discipline-based has provided a stronger sense of belonging to the STEM community as a 
whole. This approach has engaged not only the students, but also has helped the university as a 
whole to appreciate the commonalities among STEM majors as well as the challenges that 
STEM majors face. 
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Both Sides of the Equation:  
Learner and Teacher 

 
 
Abstract 
 
An engineering professor decided to retake a first-semester calculus course under the 
tutelage of the chair of mathematics at Boise State University. While completing the 
course with 37 other students, she had in-depth experiences as a student of a calculus 
class as well as an experienced educator with a strong background on STEM retention. 
During the course, she recorded her observations and experiences in the classroom. The 
math professor also shared reflections on his teaching, observations of his students, and 
perspectives on the influence of her presence in his class.  
 
The two professors’ reflections enabled us to identify a set of student assumptions and 
learning behaviors that would likely influence their learning outcomes in both positive 
and negative ways. We developed a survey questionnaire based on the identified student 
assumptions and learning behaviors. At the end of the course, we administered the survey 
with the calculus students in order to obtain the students’ perspectives. By triangulating 
the three sources of information and through our self-reflections on the results, we have 
generated recommendations on teaching strategies to which math and engineering 
instructors might need to pay attention, in order to better understand students and to 
provide them with more meaningful learning experiences.  
 
Introduction 
 
Of the many factors affecting student success in engineering, competency in mathematics 
is among the most frequently cited. Indeed mathematics proficiency is at the heart of 
national conversations about education at all levels. News headlines and policy reports 
warn that U.S. K-12 declining mathematics test scores portend concerns for national 
competitiveness1.  “Change the Equation,” the national initiative led by more than 100 
corporate CEOs, underscores math proficiency as essential to achieve STEM literacy and 
to stimulate technological innovation and economic prosperity. The recent February 2012 
report by the President’s Council of Advisors on Science and Technology includes a 
focus on mathematics preparation as one of five key strategies to produce one million 
additional college graduates with degrees in science, technology, engineering and 
mathematics over the next decade2. 
 
Like the rest of the country, Boise State University has implemented research projects 
and initiatives to study and improve mathematics success among engineering students, 
with particular emphasis on freshman retention. An engineering professor who has led 
several of these initiatives decided to experience freshman-level calculus firsthand by re-
taking Calculus 1 nearly 30 years after her own freshman days. Her instructor was the 
chair of the mathematics department, a professor with whom she has collaborated on 
numerous research projects. The evidence presented in this paper is based on the P
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experiences of these two professors. The information presented may provide other 
instructors with insights of use to them in their instructional strategies. 
 
 
The paper is structured in six sections.  First is a collection of observations from the 
perspective of the engineering professor, the Learner.  These were written approximately 
mid-semester without comment or review from the Calculus professor, the Teacher.   
Next is a similar section from the point of view of the Calculus professor, written in the 
same time-frame.  This was also written without any knowledge of the engineering 
professor’s comments or any input or feedback.   The third section is a third party 
analysis of data collected from students and the two professors after obtaining 
institutional review board approval late in the semester.   The next two sections are the 
thoughts of the two professors after reading each others’ commentary and the third party 
analysis. Finally, a set of actions that have already been taken or that are planned as a 
result of being experiencing “both sides of the equation,” are listed. 
 
[1] The Learner’s Experience 
 
Our professor came to class today with a giant packet of exams. By now, he knows all 
our names, having practiced daily with index cards we created on the first day, with our 
name and favorite movie. I admit I am a little nervous about getting my exam back. I 
believe I did okay; I think it’s possible that I did very well. I was able to answer all the 
questions, but I have a superstition about this – when I think I’ve done well on an exam, I 
often wind up with a low score (meaning, a B, instead of an A; or the rare C). So, I’m a 
little nervous. 
 
My exam is now in my hands – both parts. I can’t see a score readily visible; there are 
two stapled sections, each with multiple problems, each problem with a score. I start 
adding them up to see my total. My professor has a very interesting model for giving 
math exams. Because our class periods are only 50 minutes in duration, he allots two 
days for each exam, so that we have enough time to answer the problems. He gives the 
exam in two parts. Part 1 was given on Wednesday, in the fifth week of classes, and was 
worth 80% of the possible points. We read on the professor’s website3 that part 1 is 
designed with a strategy of being a combination of “type 1” and “type 2” questions – the 
sorts of questions we’ve been practicing on, in our homework. Part 1 is closed book; we 
can use any form of calculator we want, but cannot connect to the internet. There are two 
versions of Part 1, as the class sits in relatively close quarters. The exams are put in front 
of us in different colored envelopes so the professor can easily see which version you 
have as he distributes them across the classroom. Part 2 of the exam was given on Friday, 
and worth 20% of the grade. Part 2 is open book, open notes;  designed to be a higher 
level of problem solving, or as my professor calls them, “type 3” questions. Each day, I 
finished within the time-frame, with time to check my work and even time beyond that; 
but I noticed other students used every minute of the time available. 
 
Today is the following Wednesday, and the professor already has both parts of the exam 
graded. If my addition is right, I got a 95! Feeling good, I look to my friends on my left 
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and right – some have small smiles; others look a little tense. The distribution is put on 
the board, and we are told the average was a little higher than normal, at 78. I have the 
fifth highest score in the class. What a great feeling! But, about a third of the class has a 
score below a 70, and these students are invited to meet with the professor, to make an 
appointment to see him. He tells them to “bring everything – your notes, your homework, 
your exam.” He will do his best to diagnose some things that they can try to do 
differently to help them correct their course. 
 
Perhaps you realize by now that I am not a “normal” calculus student. I am retaking it. 
Not because I failed it the first time, but because when I last took calculus, Jimmy Carter 
was President and I was enrolled in calculus as an undecided first-semester freshman. I 
attended a large lecture three days a week, and a discussion section two days a week. I 
have zero recollection of the math professor and only slightly more recollection of the 
subject matter. I was the sort of student who went to all the classes, and did the assigned 
homework. With weekly quizzes and collected homework in my Jimmy Carter calculus 
class, I earned an A – which likely influenced my decision to stay in a “STEM” major.  
 
My motivation for taking calculus under the presidency of Obama began at first with my 
desire to be able to help first-year engineering residents with their math homework. I’m 
the Engineering Residential College’s Faculty in Residence at a metropolitan university 
in the northwest. This means that I live in an apartment in a residence hall on campus, on 
a floor with 18 engineering students. And I get asked lots of questions – some of them 
about homework. I can generally rally on the chemistry questions, and reason through the 
physics, but my memory of calculus has faded dramatically over the years due to lack of 
use. This fuzzy memory was embarrassing to me, so I decided to retake the class. It has 
been an interesting experience, and I have recorded some of my observations, from the 
perspective of a student who has taught as a materials science and engineering professor 
for nearly twenty years. 
 
Observation #1, Help Students Connect! Students don’t reach out to each other much. 
At first, in the class, hardly anyone spoke to each other. After hearing the professor 
actively encourage group study sessions, I became relatively proactive in the back of the 
room, and got students exchanging cell numbers with me, and with each other, and even 
put one student in charge of distributing the information about informal study sessions 
they subsequently organized. I am pretty sure that this study session, involving about 10 
people from time to time would not have formed without my instigation. By the sixth 
week of classes, they sorted themselves into smaller groups, pairs and triplets of students 
who study together and routinely sit next to each other. 
 
Observation #2, Engaging the Class: My math professor is an excellent instructor. He 
uses a variety of techniques to engage the students. He has us do in-class exercises, 
“warm-ups” he calls them, and says we should be able to differentiate as fast as he can 
write the statements on the board. He has us work in small groups with each other. He 
smiles in class and has a wry sense of humor; the class chuckles from time to time and 
students genuinely seem to enjoy class. Students feel very comfortable asking in-class 
questions, and he will deviate from his lecture to accommodate as many questions as we 
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have about the homework or what we’ve been covering. He uses interesting analogies – 
for example, he refers to the rules of differentiation as “power tools.” And then goes on to 
explain, “You have to know how and where to use them so you don’t hurt yourself.” 
And:  “Practice, practice. You want to get to a point where your fingers remember even if 
your brain forgets!” 
 
Observation #3, Assumptions: As professors, we make assumptions. For example – my 
professor assumed that we knew it was okay for us to work on our homework together. 
As a student, this was not obvious to me – and so in class, the second week, I asked aloud 
the question – “What do you think about study groups?” I think my professor was getting 
a little tired of questions from me by then, and he replied concisely, “They’re good.” 
“Why?” I replied. He elaborated – and his words were important to the class. He 
explained that generally, students who work in study groups, do better on exams, and that 
a lot of research has been done on this. In his view, it boils down to students in study 
groups having a more rapid feedback loop when doing homework. The key thing that he 
said was, “I encourage you to work with other students when you’re doing homework.” 
This was important to state aloud because the “honest” student might have imagined that 
it was unethical to work together; that we were expected to be doing all our own work. In 
fact – we were encouraged to work with each other. Having this explicitly allowed was 
important, and as instructors I propose that we all make a point of stating our views on 
study groups in the first or second week of classes. It could be put into our syllabi as 
being explicitly permitted and encouraged. 
 
Observation #4, Weekly Graded Homework Is Important. In my calculus class, we 
have four homework assignments a week, one for each day of class, and they are 
collected on Fridays into two piles. We do not have any discussion sections – the 
professor is there every day. Pile 1 – a thicker stack, is for a grader (an undergraduate 
paid by the hour) to briefly examine and assign a grade. Pile 2 is for the professor, a 
shorter stack – he is careful with his time, but gives each of us a few minutes every week, 
as he evaluates our work. The very interesting aspect of this professor’s homework 
grading – is that the homework grade for the week is a product of the two pieces1. So – 
you could get a 9 from the professor, and an 8 from the grader, making a grade of 72 for 
your homework that week. I really like this homework model, and plan to implement it 
next time I teach a class. 
 
Observation #5, Women: About one-third of my calculus class is female. Nationally, 
about 20% of engineering degrees are conferred to females4. A recent, comprehensive 
article examining the causes behind the under-representation of women in engineering 
concludes that one of the underlying reasons for this is recruitment – more women need 
to be recruited, through outreach, into engineering disciplines5. I have made it a point to 
speak with many of the women in class; about half of us are in a large clump in the far 
back row. Has anyone considered students taking Calculus 1 as an engineering 
recruitment pool? I think it a great opportunity for an engineering professor to reach out 
to the calculus professors, and to let them know if they ever want a substitute one day, 
that they’d be delighted to speak to the class about some applications of calculus. Send a P
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dynamic professor in, and then follow up with an invitation to an event, or to have coffee 
with you if they have questions about engineering as a career choice. 
 
Observation #6, Vision: My eyesight has changed! It’s a different experience, wearing 
readers in class. My vision has always been exceptional. This changed for me recently, 
and I now use fairly weak readers – but they make a crucial difference. I made two 
mistakes on the exam – and one was a transcription error, I didn’t see one of the numbers. 
With about 14 million Americans aged 12 years and older having self-reported visual 
impairment6, I see no reason not to use a 14 point font on exams and homework 
assignments.  
 
Observation #7, Distractions: Students text in class. I couldn’t believe my eyes; one 
student sitting next to me was routinely texting in class. I happen to know that my 
professor is one of the best math instructors we have at this university. I told the student 
this. And then on another occasion when we were working together and the student was 
glancing at her phone, I asked her to please put it away. Nearly all the other students 
seemed quite focused and did not look at their phones with any measurable frequency. 
This particular student unfortunately did poorly on her first exam, and I subsequently had 
a conversation with her about how educational theory shows that it takes several minutes 
to refocus after receiving a text – and how by then, another text has been received, so 
altogether texting while studying attending class or studying renders the time spent 
relatively ineffective. Next time I teach a class, I plan to show students some research on 
this issue. And then ask the class to agree on some ground rules for the class, because it 
distracts the people nearby as well as the person engaged in the activity. 
 
Observation #8, Love of Learning; Reasonableness: I had forgotten – or perhaps never 
realized – that I love to learn! I enjoy solving problems. It is satisfying to correctly 
answer a math problem. My professor keeps asking questions about rabbits, and how the 
population of rabbits grows, and what rate of change the rabbit population has when there 
are 500 rabbits, and so forth. I find it fun to figure out the rate of change in the rabbit 
population. My skills in reasonableness are helpful. At some point in my college 
education, I learned how to judge an answer as being reasonable. When did I learn to 
apply this “reasonableness” judgment? At some point, I developed this expertise. How 
can we teach this to freshmen?  
 
Observation #9, Self-Efficacy Matters: I am confident in my mathematical abilities 
now and it makes a difference in my classroom mentality. Knowing you can actually 
perform, given enough time is a great feeling. As instructors, the things that we can do to 
build up the self-efficacy of our students in terms of their ability to apply what they’ve 
been learning, are important. Here’s an example of how my professor enables mastery 
experiences, which help shape self-efficacy7. He has 100% of his old exams – and their 
solutions – on his website, with statistics of student performance on each question. This 
allows students to practice problems that are similar to the types of problems they will 
see on their upcoming exam. Having a straightforward exam, with opportunity for 
practice and enough time to answer the questions by using two days for the exam gives 
students a fair opportunity to perform to their level of preparation. 
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Observation #10, Calculator Competency: Calculator competency is all over the map 
in terms of the freshmen at this metropolitan university. For this course, I began to use a 
spreadsheet application, to calculate the various secant slopes required in the homework. 
This was incredibly efficient, but I knew that for exams I had better start using my new 
TI-89, as I couldn’t whip out my laptop during an exam. I painstakingly turned it on and 
started using it. In the Jimmy Carter days, I used reverse polish notation, and there were 
no graphing calculators available for use in examinations.  
 
Now – my past experiences made me aware that there is definitely a way to store a 
number in a calculator. Yet how to do this was not obvious to me in peering with my 
readers down at the tiny notation on the calculator side-buttons. During an in-class 
exercise, hand-calculating a series of secant slopes, I realized how it would be useful to 
store the outcome of X times “e” raised to the X, where X was 1.003476. As an 
experienced “networker,” I have realized that simply “asking one who knows” is a faster 
way of figuring out how to do things than reading the manual. So – I asked the person on 
my right, how to store a number. She didn’t know. My eyebrows arose, internally 
marveling at this deficit. I asked the person on my left, who also did not know. And then 
the person to the left of left, and right of right. The people in the row in front of me. I 
actually got to my feet to get to more people and had surveyed almost one-third of the 
class before finding ONE student who would show me how to store a number in 
calculator memory. I shared how to store this number with all who were interested. I also 
shared it with the professor, who was unsurprised. Yet – this is a performance issue, and I 
am still astounded by the lack of calculator knowledge in our freshmen. Their calculator 
“know-how” is not even. This has motivated our university to develop and hold a 
calculator help session in spring, 2012; we may also introduce some topics in the 
Introduction to Engineering class that engineering students usually take concurrently with 
Calculus 1. 
 
Observation #11, Networking: Students don’t know how valuable a resource they are to 
each other. I think that this is where experience plays in, and I believe I learned some of 
this during my upper division education as a chemical engineering student, and the rest 
during the research phase of my Ph.D. I learned to ask for help, to consult with multiple 
people about how to approach a task that I hadn’t done before. I applied my networking 
skills like crazy in this course. It is definitely helpful to be living on a floor of fellow 
engineers, because when I hit a task on my calculator that I need help with, I go down the 
hall looking for a student who can help me. One student in particular has been incredibly 
helpful to me, even though he wasn’t familiar with the Ti-89, he knew that what I needed 
to do, could be done, and fiddled with it until he figured it out. One thing I asked him was 
how to program an equation in to calculate a series of numbers – this was in about week 
four of the class. I learned from him that it could not only do that, it could also graph it by 
just hitting two more keys.  
 
You can probably guess what I did with this information – the next day I was 
demonstrating this to the students I sat near. Some already knew, but more didn’t. One of 
them was dumbfounded and wished she’d known how to do this three weeks ago, before 
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we started doing hundreds of secant slopes by hand. By showing my fellow students what 
I had learned from another student, I was hoping to be teaching them more than just that 
one new skill. I hoped that I taught them that there is a wealth of information to be 
obtained from your peer group. Network and ask your classmates.  
 
Observation #12: Thank You, Newton! Differentiation is a LOT FASTER than taking 
secant slopes – even if you know how to program your calculator! By the time we were 
introduced to the derivative, we were definitely ready for it.  
 
Summary:  It is now the end of the semester, and grades are in. Although I didn’t 
formally register for the class, I did take all the exams, including the final. I attended 
every class when I was not out on travel. I did most of the homework. My grades on the 
exams were pretty good: I certainly achieved my original goal of relearning calculus. 
 
[2] The Teacher’s Experience 
 
When the engineering professor first broached this idea I was immediately attracted, but 
for no concrete reason that I could articulate at the time.   Mostly the positive feeling 
arose from my respect for her dedication to improving instruction at our institution.  It 
also helps that we have a history of productive collaborations on educational initiatives at 
our institution.  At the same time, through, there was a sense of trepidation.   Probably no 
teacher is immune to a little doubt or nervousness when there is a peer or professional 
observer watching – and what she proposed was an entire semester of it.  It’s also worth 
noting that I had a weak understanding of why she wanted to do this.   I have to admit 
that her claim of wanting to relearn Calculus seemed odd – and this seemed like a weirdly 
large investment of time to achieve that end.   I was a bit skeptical, and suspected that she 
was just as much interested in a close-up look at teaching methods, at least as practiced 
by one person from the math department.     
 
Although I did not have specific expectations of the value that the experience might 
provide, my intuition was that it would be both useful and interesting, and well worth any 
potential downside.  It was easy to say “yes” to the proposal.  
 
Observation #1, A Different Audience: Teaching is at some level a performance. There 
is usually a real-time feedback loop running in my head in which I am asking and 
answering questions like “Is this working?” “Are they getting it?” The engineering 
professor’s attendance in my class has altered my sense of the audience.  While I teach, I 
hear questions in my head.  Often it’s "Did she get that?” but I also extrapolate to, “If she 
is not getting this, surely others are not,” and, “Looks like she is getting this. I wonder 
how it comes off to the others.” 
 
Observation #2, New Signals: When she looks puzzled, sometimes I’m not sure why. Is 
this because she doesn’t get the math that was just explained, or is it meta-puzzlement?  
Maybe the math makes sense to her but she is wondering why I chose to say it that way 
or how on earth I could think that freshman would understand what I just said. 
Sometimes I wonder if she is puzzled-on-behalf-of-others. That is, she gets it, but worries 
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that the students don’t, and she’s sending a signal so that I will notice and respond with 
an alternate explanation. Sometimes I wonder this when she asks a question, too.  
 
Observation #3, Student Questions: I start almost all classes by checking to see if 
anyone has questions.  The intent is to answer questions about last night’s homework, but 
I take anything.  It is not unusual for this to garner complete silence. Some of this is 
probably students’ anxiety or fear of being the first to ask a question.  The engineering 
professor breaks the ice. I’m never sure if she’s asking about homework she struggled 
with or if she is acting as spokeswoman for other students. No doubt there is a 
spokeswoman effect, since it is not uncommon for students to take the approach of 
hoping that someone else asks about the problem that they got stuck on. Sometimes I 
worry if she does too much of this, since I want an atmosphere in which students are 
taking advantage of the question period and not just waiting, hoping someone else will 
ask. If she does a lot of this, students may come to rely on it rather than develop the habit 
of asking themselves.  
 
Observation #4, Introspection on Difficulty: I find myself introspecting more than I 
normally would on the level of difficulty I have designed into the course.  From ungraded 
homework all the way to the most difficult exam questions, I find myself wondering if 
she thinks this is too hard for first year calculus students, or perhaps too easy. I also 
wonder what she thinks about where this is all going. That is, why should students bother 
to learn this stuff (or more accurately, why should they be required to learn it)?  
 
Note: Observations 1-4 reflect thoughts that were fairly prominent in my mind early in 
the semester; less so as the semester progressed.   
 
Observation #5, Facilitation: Sometimes I want students to do work at their desks, 
either for a very brief period to warm up to what I want to talk about, or for most or all of 
the class period. The engineering professor helps this come off better than it might 
otherwise.  Some of her contributions: 

• She always jumps into the work. Sometimes the rest of the class is a little 
reluctant to get going and needs some prodding. 

• She immediately involves a few other students sitting near her. Frequently the rest 
of the class needs more than a little prodding to do this. 

• At the very least, this gets some small number of students immediately working 
and immediately involved in some sharing and discussion. Sometimes this seems 
to work as a social example and get other students to do likewise. 

• When the student work occupies a full class period I like to move about the room 
keeping tabs on what each group is managing in the way of forward progress. 
There are 37 students, and usually a dozen groups, so I can’t make rounds fast 
enough. Sometimes she will jump up and circulate also. This is very valuable on 
days that are primarily centered on student work. It is also a new experience for 
me to have an additional, equally able, facilitator to make the rounds. I seems like 
there is an opportunity here for me to learn a very different approach to group 
work that could rely on a number of sufficiently able facilitators and serve a 
potentially much larger group of students.  
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Observation #6, Direct Feedback:  She is highly complimentary of my teaching. It feels 
shallow to care, but I do and it’s nice.  She is never not-complimentary. Nor has she 
offered specific advice or constructive (or other) criticism. If she did, it would probably 
bug me a little, and then I would feel shallow about that, too. 
 
She should do it anyway.  It seems likely that she has advice that she would like to share.  
It’s possible that she feels constrained to silence by the social dynamics or by the nature 
of the experiment we are conducting.  However, if what we are doing could possibly be a 
vehicle for increasing teaching effectiveness, then it must include an open channel for 
advice and constructive criticism.  
 
Observation #7, Classroom Dynamic: When I was much younger it was normal for a 
more senior faculty member to conduct an occasional classroom observation. My 
recollection of this is that students were well aware of the unique situation on the day of 
an observation, and that there was a tangible difference in the classroom dynamic. 
Interestingly, I sense no such phenomenon generated by this observer.   It could be 
because it’s more of an every-day thing. It could be that she manages to convey a non-
authoritarian presence, whereas other observers did. Maybe, her consistent attendance 
and her participation on homework and exams made her role one of student/learner, like 
them, rather than observer.  
 
Observation #8, Graded Work: It is revealing to grade the engineering professor’s 
work next to student work. She’s pretty good. She gets most everything right, but then so 
do a lot of other students. But there is a huge difference in the quality of communication 
conveyed on her exam papers. I am intrigued, but unable to pin down what’s actually 
happening here. Whatever she is doing it is very much what I (and probably many, many 
other college instructors) wish students would do. It is probably worth a close 
examination of what she does differently and how she learned to do it.  
 
Observation #9, Study Groups: I believe that one of her goals is to foment the 
formation of stable study groups.  It is unclear if her presence does this (except as noted 
already for in-class work). If so, it is also unclear if her presence changed what would 
have happened.   
 
Summary: The entire experiment – having an engineering professor in my Calculus class 
– gave me a stronger sense of education as a collaborative effort instead of a solo act. I 
don’t know how much I respond or adapt to her presence, but I do find myself searching 
out her face each morning. Without knowing why, it seems that my first thought at the 
beginning of each class is whether or not she’s there. 
 
[3] Students’ Perspectives Compared to the Professor and the Learner 
 
Based upon reflections on the two professors’ observations, we identified several main 
issues to pay attention to: 
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1. Importance of help-seeking and networking - Wouldn’t it be important for 
students to provide and seek help to/from each other and to network with each 
other? 

2. Expectations and effectiveness about collaborative homework - Are the 
instructor’s and students’ expectations/assumptions on collaborative homework 
same or different? Did students find the weekly graded homework as effective as 
intended? 

3. Perceived effectiveness of instructional methods - Did students find the 
instructor’s instructional strategies and characteristics to be effective?  

4. Perceived effectiveness of multi-tasking during class - Did students understand 
the potentially negative effects of multi-tasking in classroom?  

5. Effects of timed tests - Is our method of timed tests the best way to measure 
student competence? 

6. Impacts of the engineering professor’s presence on other students - Did her 
presence have an effect on students?  

 
We then developed a survey questionnaire (see Appendix A) to measure students’ 
perspectives on those identified issues. Thirty-seven students enrolled in this Calculus 
class. We administered the anonymous survey on the last day of the class without the 
presence of the math professor and the engineering professor in class – 30 students 
voluntarily submitted the survey (21 male and 9 female). The average age of the survey 
participants was 21 years old (Min. = 18, Max. = 32). The math professor and the 
engineering professor also independently completed the same survey to provide their 
perspectives.  
 
Finding #1: Importance of help-seeking and networking (Q3-Q9) 
 
Is it important for students to provide and seek help to/from each other and to network 
with each other? Research has shown that the answer is usually yes, although the help-
seeking behavior is complex and often influenced by motivational and attitudinal factors8.
 
Both the math professor and the engineering professor either agreed or strongly agreed 
that in order for students to be successful in this class, it would be important for them to 
provide help to, or seek help from, their classmates.  
 
A majority of students (80%) also strongly agreed (33.3%) or agreed (46.7%) that it 
would be important to collaborate with their peers.  Students perceived that about 3 or 4 
members in a study group would be an optimal number (M = 3.43, Min. = 1, Max. = 6).  
 
Students reported that they occasionally provided help to their classmates, sought help 
from them, and shared information with them. As shown in Figure 1, the engineering 
professor’s observation supports the students’ self-report on these help-seeking and 
networking behaviors, likely because of her experience as a student in class (see 2.7 vs. 
3.0, 2.7 vs. 3.0, and 2.9 vs. 3.0 in Figure 1).  
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The more important students think it is to provide help to, or seek help from, classmates 
to be successful in the class, 

• the more frequently they actually helped their classmates (rho = .606, p < .001) 
• the more frequently they sought help from classmates (rho = .459, p = .011) 
• the more frequently they shared useful information with each other (rho = .738, p 

< .001) 
 
Several students reported difficulty in finding knowledgeable peers as a problem in trying 
to help or seek help (e.g., “they were as stuck as I was”). The engineering professor’s 
observation confirmed this problem; she recalled, “their fellow students may not have 
been able to help them. For example, when I was seeking help with my calculator, I had 
to consult with about 8 students before I found one who could help me.” The math 
professor also observed a similar issue during small group activities in class: “[I] did not 
have sufficient opportunity to observe students seeking help from each classmate. The 
only chances I had were during small group work in class. On those days my time is 
mostly spent on groups that are completely stalled.” 
 

 
Figure 1. Importance and frequency of help-seeking and networking. 
(1 = strongly disagree or never, and 4 = strongly agree or frequently) 
 
Finding #2: Expectations and effectiveness about collaborative homework (Q14-
Q18) 
 
Students were assigned to complete weekly homework which was counted toward 16.7% 
of the total grade. All students except one thought that the weekly graded homework 
assignments tremendously (66.7%) or fairly (26.7%) helped them improve their 
knowledge in Calculus, which was supported by the math professor’s expectation and the 
engineering professor’s observation.  
 
However, students tended to work in a study group for only some of the homework 
assignments (on a 4-point scale of none, some, most, and all), although they thought that 
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it was fairly effective to work with classmates in a study group to compete their 
homework assignments. Students experienced difficulty in scheduling for meeting and 
not having anyone in their team capable of solving difficult problems.  
 
Another possible reason is a lack of understanding of the instructor’s expectation. A 
meta-analysis on the effects of small-group learning on undergraduate science, math and 
engineering courses has shown positive outcomes on academic performance, and 
attitudes toward and persistence in learning9. Supported by the meta-analysis, the math 
professor’s expectation was that students were allowed to work with their classmates to 
complete their homework assignments. However, both the engineering professor and the 
math professor predicted that in the beginning of the class, students might have not been 
sure about whether they had to complete the homework assignments alone or 
collaboratively.   
 
Indeed, the student survey showed that eighteen students (60%) knew from the beginning 
that they could collaborate with classmates to complete homework, but three students 
(10%) were not sure about the expectation and nine students (30%) thought they had to 
do it alone. In other words, 40% of the students (the last two groups) did not clearly 
understand the instructor’s expectation in the beginning.  
 
Overall, the students and the engineering and math professors shared similar perspectives 
about the frequency and effectiveness of collaborative work in a study group when 
completing homework assignments (Figure 2).  
 

 
Figure 2. Frequency and effectiveness of collaborative work in a study group. 
(1 = none or not effective, and 4 = tremendously, all homework, or extremely effective) 
 
Finding #3: Perceived effectiveness of instructional methods (Q10-Q13) 
 
What do the students think about the instructor’s teaching strategies and characteristics? 
During the class, the engineering professor observed the math professor using several 
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effective instructional methods – e.g., having a Q/A session in the beginning of each 
class, providing warm-ups exercises, showing a sense of humor, and having students 
work in small group activities. The students confirmed in the survey that those 
instructional methods were helpful (Figure 3). Encouraging students to ask questions in 
each class helps them self-monitor their understanding of Calculus and develop self-
regulative behaviors, which likely facilitate higher learning outcomes10. Research has 
also shown positive outcomes of using small group activities in learning math11, 12.  
 

 
Figure 3. Perceived effectiveness of instructional methods. 
(1 = strongly disagree, and 4 = strongly agree) 
 
Finding #4: Perceived effectiveness of multi-tasking during class (Q19-Q21) 
 
The engineering professor observed that some students engaged in off-tasks during the 
lecture such as reading and sending text messages, and she strongly believed that multi-
tasking during the class would reduce learning effectiveness, as supported by research13. 
This multi-tasking behavior in class was confirmed by students’ self-report, although 
students also shared the same belief that multi-tasking could reduce learning 
effectiveness (Figure 4). More than half of them (51.7%) either frequently (3.4%), 
occasionally (17.2%), or sometimes (31.0%) engaged in multi-tasking such as 
reading/sending text messages during the lecture, even though all students strongly 
agreed (75.9%) or agreed (24.1%) that it would be important to focus on lecture without 
multi-tasking. 
 
The more confident in learning Calculus students were, the more strongly they agreed 
that it would be important to avoid multi-tasking during the class (rho = .432, p = .019). 
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Figure 4. Perceived effectiveness of multi-tasking during class. 
(1=strongly disagree or never, and 4=strongly agree or frequently) 
 
Finding #5: Effects of timed tests (Q22-Q24, Q26) 
 
Is timed testing an appropriate measure of student competence? Sixteen students (57.1%) 
reported that they sometimes had to submit a test without completing all questions 
because they ran out of time (also see Figure 5). Not surprisingly, the more strongly they 
disagree that speed is an important measure of student competence in Calculus, the more 
strongly students think they could produce a better score if they were given more time 
during the test (rho = -.457, p = .013). Also, students who experienced lack of time 
during the test tended to expect to receive a lower grade (rho = -.396, p = .037). Research 
seems to support these outcomes; one study has shown that both low- and high-achieving 
students performed better on their statistics exam under the ‘no time limits’ condition 
than under the ‘timed’ condition, and that students with high anxiety (often lower 
performers) had greater benefits from the untimed condition14.  
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Figure 5. Effects of timed tests. 
(1=strongly disagree or never, and 4=strongly agree or frequently) 
 
Finding #6: Impacts of the engineering professor’s presence on other students (Q27) 
 
The engineering professor attended the Calculus class and engaged in class activities as 
other students did. She did not introduce herself as an engineering professor until the last 
week of the class. Did her presence have effect on other students in class?  
 
Forty-eight percent of students reported that they thought she was just one of the 
students, and that her presence did not directly affect them. However, students reported 
various benefits they gained from her presence in class (Figure 6). Most of all, students 
acknowledged that her active involvement in class helped them ask more questions in 
class (n = 11). This was one of things that the engineering professor was hoping for, and 
the math professor also pointed it out as one of the impacts that she made in class.  
 
Students reported that her presence also helped them want to do homework with others (n 
= 6), want to seek help when they needed help (n = 6), pay attention to class (n = 5), not 
to multi-task during the class (n = 3), want to help other students when they needed help 
(n = 3), and use their calculator more effectively (n = 2).  
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Figure 6. Impacts of the engineering professor’s presence. 
 
[4] The Learner’s Reflections 
 
In fall, 2011, I went to math class four days a week, from 8:40 to 9:30 a.m. I sat in the 
back of the class with other students who became my friends. Beyond content remastery, 
I gained an incredible perspective. I learned some new teaching tricks while also 
reconnecting with what it feels like to be a student. It is scary to be a student. We don’t 
know some basic skills – how to network, how to use our calculators, how to study, how 
to focus, when it is and is not okay to study with others.  As professors, we can help 
students with these skills, by actively talking about them. That is – in math, we can help 
students form study groups. We can encourage them to network when they get stuck on 
something. We can help them use their calculators. We can learn their names.  
 
When asked during the semester what it was like to take calculus, and also in retrospect, I 
have this to say: “It was the favorite part of my day.”  
 
[5] The Teacher’s Reflections 
 
I could write another paper solely in response to thoughts generated by reading the 
comments from the engineering professor in section [1].   For brevity’s sake I will restrict 
myself to a few of the more important lessons I believe I learned from this experience.  
 

• I was a much more reflective teacher this semester, due wholly to the sustained 
presence of this colleague in my class.  

• On a deeper level, my exposure to her written thoughts, and then subsequent 
iterations of my response to them and ensuing dialog, have proved to be much 
more valuable to me as an instructor than any amount of self reflection could ever 
be. 

• The biggest single item from her observations that I plan to add to my teaching 
practices is to be deliberate about instructing students in successful habits.   
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Specifically, the formation of collaborative groups and an understanding of the 
value of homework.  I’ve always known I should say more about these things, but 
semester after semester I end up not saying much.  This needs to change.  

• I am quite surprised by the how closely her and my answers to survey questions 
track with the average student responses.   My a priori assumption was that 
students would display significantly different opinions and perceptions.  I am 
particularly happy to see that students value homework.  

• The two answers where there was significant distance between the students and 
the professors stand out.   The first is the issue of time allowed on exams, which 
both professors felt was mostly irrelevant, while students felt it strongly affected 
performance.   On this point I have no illuminating comment, other than that it is 
good to know their collective opinion.  

• The other survey question with divergent answers was about student’s 
multitasking during class.   I felt it was largely irrelevant, but students and the 
observer felt it was very damaging (Even more than time pressure on tests!).  I 
had long held a firm opinion about this – I assumed it was irrelevant because I 
think very little of what I say in lectures has much to do with student learning.   I 
believe learning lives in the homework.  What I do with my 50 minutes each 
morning is entirely aimed at inducing the doing of homework.  For many 
students, direct instruction in how to work a homework problem is a pretty useful 
inducement, so I do a lot of that.  On the other hand, there are many other ways 
for a student to find their way through a homework set.  I don’t presume to know 
whether or not watching me do examples is the thing that works for any particular 
student.  If someone chooses to text instead of watching me, I would assume that 
this is because watching me work examples isn’t what gets them traction on 
homework problems.    
 
However, the student response to this question is too extreme for me to remain 
comfortable with my prior belief.   Clearly this bears additional thought.  And 
perhaps it calls for a change in tactics in the classroom.    

 
[6] Specific Actions Taken  
 
As a result of reflecting deeply on both sides of the equation, learner and teacher, and the 
vast number of unintended positive consequences associated with the semester’s 
experiences, we recommend and/or are institutionally adopting the following specific 
actions: 
 

• A calculator “help session” will be offered in spring, 2012. 
• We plan to support mathematics instructors who may be interested in taking a 

follow-on course, e.g. physics with calculus, in order to foster deeper 
relationships between instructors in different fields, student-centric teaching, 
share and learn teaching best practices and to help teach how mathematics is 
applied to solve problems in different fields. 

• The chair of mathematics and the engineering professor hosted an informal 
brown-bag seminar, to discuss and disseminate their observations in December of 
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2011. It was the best attended STEM brown-bag lunch held at this university, 
with 21 attendees. 

• The engineering professor wrote and published in the engineering student 
newsletter, “Become an Instigator (Instigator: leader, mastermind, 
troublemaker).” It shared her experiences as a calculus student and actively 
encouraged them to “become instigators in their classes.” To set up study groups; 
to speak with the person sitting next to them in class15. A follow-on student article 
is planned. 

• Calculator functionality will be incorporated into the Introduction to Engineering 
class, which is taken concurrently with Calculus I at this university. 

• The engineering professor plans to skip Calculus II and go right into Calculus III 
in spring, 2012. Wish her luck! 
 

 
Acknowledgments 
 
This material is based upon work supported by the National Science Foundation under 
Grant No. 0856815. Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the author(s) and do not necessarily reflect the 
views of the National Science Foundation. The authors wish to thank Patricia Pyke and 
Elisa Barney Smith for their input on the paper. 
 
 

P
age 25.267.19



Appendix A. Student Survey 
 
Please respond to each question with your best answer. It is an anonymous survey and 
your name will not be associated with your responses.  
 
Q1. I am __ male __ female. 
 
Q2. I am ___ years old. 
 
 
Please think about this class when you answer the following questions.  
 
Q3. I think that it is important to provide help to, or seek help from, my classmates, in 
order to be successful in this class. 
__ Strongly agree __ Agree __ Disagree __ Strongly disagree 
 
Q4. How often did you provide help to your classmates in this class? 
__ Frequently __ Occasionally __ Sometimes __ Never  
 
Q5. How often did you seek help from your classmates in this class? 
__ Frequently __ Occasionally __ Sometimes __ Never  
 
Q6. How often did you share useful information with your classmates? 
__ Frequently __ Occasionally __ Sometimes __ Never  
 
Q7. When you need help with using your calculator, how likely are you to ask a 
classmate or friend for assistance? 
__ Very likely __ Somewhat likely __ Somewhat unlikely __ Very unlikely 
 
Q8. How many members in a study group do you think works best?   
_____ members (including yourself) 
 
Q9. If any, what problems did you experience while seeking help from your classmates?  
 
Q10. My instructor’s question/answer section in the beginning of each class was helpful.   
__ Strongly agree __ Agree __ Disagree __ Strongly disagree 
__ I don’t remember having a question/answer section in the beginning of each class.  
 
Q11. My instructor’s “Warm-ups” exercises were helpful. 
__ Strongly agree __ Agree __ Disagree __ Strongly disagree 
__ I don’t remember the “Warm-ups” exercises he used.  
 
Q12. When my instructor showed a sense of humor during the class, it helped me learn 
the material better.  
__ Strongly agree __ Agree __ Disagree __ Strongly disagree __ It did not matter. 
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Q13. The small group activities in this class helped me actively engage in learning.   
__ Strongly agree __ Agree __ Disagree __ Strongly disagree 
__ I don’t remember having small-group activities in class. 
 
Q14. In the beginning of the semester,  
__ I thought I had to complete the homework assignments alone.  
__ I knew I could complete the homework assignments with classmates in a study group. 
__ I was not sure about whether I had to complete the homework assignments alone or if 

I could complete them with classmates in a study group.  
 
Q15. How often did you work in a study group to complete your homework assignments? 
__ All homework assignments 
__ Most of the homework assignments 
__ Some of the homework assignments 
__ None of the homework assignments 
 
Q16. How effective do you think it is to work with classmates in a study group to 
complete homework assignments?  
__ Extremely effective __ Fairly effective __ Fairly ineffective __ Not effective at all 
 
Q17. If any, what problems did you experience while working with classmates in a study 
group to complete homework assignments?  
 
Q18. How much do you think the weekly graded homework helped you improve your 
knowledge in Calculus?  
__ Tremendously __ Fairly __ Just a little bit __ Not at all 
 
Q19. I feel confident about my ability to learn Calculus. 
__ Strongly agree __ Agree __ Disagree __ Strongly disagree 
 
Q20. I think that in order for me to successfully learn in this class, it is important that I 
focus on the instructor’s lecture without multi-tasking such as reading/sending text 
messages. 
__ Strongly agree __ Agree __ Disagree __ Strongly disagree 
 
Q21. How often do you multi-task, such as reading/sending text messages, while 
listening to this math instructor’s lecture? 
__ Frequently __ Occasionally __ Sometimes __ Never  
 
Q22. In this class, I think I can produce a better test score if I am given more time during 
the test. 
__ Strongly agree __ Agree __ Disagree __ Strongly disagree 
 
Q23. Solving problems quickly is an important measure of student competence in 
Calculus.    
__ Strongly agree __ Agree __ Disagree __ Strongly disagree 
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Q24. How often did you have to submit a test without completing all questions because 
you ran out of time? 
__ Frequently __ Occasionally __ Sometimes __ Never  
 
Q25. After solving a problem, how often do you ask yourself, “Is this a reasonable 
answer? Does it make sense?” 
__ Frequently __ Occasionally __ Sometimes __ Never  
 
Q26. I think my grade in this class at the end of the semester will be: 
__ A __ B __ C __ D __ F  
 
Q27. In what way did the engineering professor’s presence in class affect you?  Select all 
that apply.  
 
Her presence in class helped me: 
__ pay attention to class 
__ ask more questions in class 
__ want to help other students when they need help 
__ want to seek help when I need help 
__ not to multi-task during the class 
__ want to do homework with others 
__ use my calculator more effectively 
__ Others – please describe: 
 
Q28. Please describe your experience in having the engineering professor in your class, 
and provide any suggestions.  
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Using Online Assessment and Practice to Achieve Better 
Retention and Placement in Precalculus and Calculus   

 
 

Abstract 
 
In the fall of 2008 Boise State University began using an online assessment tool, ALEKS1, as an 
initial assignment in Precalculus and Calculus courses.  This paper reports on the effectiveness 
of the ALEKS assessment as a self-placement tool, used in conjunction with standard placement 
tests and prerequisite courses. The benchmark levels of 40% and 70% of knowledge space in the 
ALEKS course: Preparation for Calculus for Precalculus and Calculus courses were used. The 
paper looks at the effectiveness of the assessment with these benchmark levels as a first student 
assignment, both as a tool for student success, and as an instrument for making efficient use of 
the university's resources.  Although there are no hard answers, and although much information 
is anecdotal, we introduce a statistic that is pertinent to these questions and show that it indicates 
partial effectiveness of the ALEKS assessment.  
 
Introduction 
 
Placing students into the proper mathematics course is challenging; across the United States 
colleges and universities employ a wide array of strategies.  A study conducted at Merrimack 
College in Massachusetts by Rueda and Sokolowski2 provides a literature review, citing works 
by Cederberg3, Cohen, et al.4, Krawczyk and Toubassi5 and others.  In looking over placement 
rubrics there does not appear to be consensus on any one particular strategy for placement. Many 
mathematics departments use a combination of ACT/SAT; others have developed home-grown 
tests that are used with reasonable success. Some use a combination of ACT/SAT, home-grown 
tests, and commercial placement exams (such as COMPASS).  When available, prerequisite 
courses are also used. 
 
For universities that enroll significant populations of students who have stopped out of school 
for a period of time, placement is particularly challenging. When there is a significant time lag 
between when a prerequisite course is taken and when then the next registration occurs, students 
may fail to retain adequate material from the prerequisite course.  Placement exams can also be 
problematic. For example, COMPASS exams are designed to be taken without preparation, but 
often students do prepare for them, or take them several times, skewing the results.  Also, the 
timing of a placement exam can result in improperly placed students.  At Boise State it is not 
uncommon that newly enrolled freshmen took their ACT or SAT one time only, in their junior 
year of high school, because their scores at that time were sufficient for admission to the 
university. Most students in STEM majors (science, engineering, technology and mathematics) 
go on to take a subsequent math course, resulting in more knowledge than revealed by their ACT 
or SAT scores. Other students, not destined for STEM majors, may choose to not enroll in 
mathematics in their senior year of high school, resulting in lack of knowledge retention by the 
time they enter the university and eventually enroll in a required mathematics course.  
 
When a student is placed in a class that is too easy it is a waste of time and resources, but the 
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situation will often right itself after one semester.  If a student is placed in a class that is too 
difficult there are two serious deleterious effects: 
 

1. The student may perform poorly, and fail the course or earn a grade damaging to the 
student’s grade point average.  There is a documented connection between first year GPA 
and graduation rate, so placement is crucial to student success. 

2. The student will need to retake the course, occupying a seat that another student could 
have had.  At Boise State University, Precalculus and first semester Calculus have been 
identified by the Enrollment Management Committee as bottleneck courses,  i.e., courses 
that can be hard to enroll in and then to pass, but are needed as prerequisites for other 
courses in a major program.  In an era where budgets grow slower than enrollments 
bottlenecks are bound to occur, but that does not excuse the systemic bottlenecks often 
encountered in these two courses. Any mitigation of bottlenecks would be worthwhile. 

 
For the most part, placement at Boise State University is via a single event approach:  a 
prerequisite course or a placement exam determines which course the student will be in, and that 
result is not revisited.  Students who are new to the university are generally placed in courses 
based on their ACT or SAT results. It has become increasingly apparent that that approach is 
inadequate.  Frequently, mathematics instructors will schedule an exam that cannot be graded 
before the deadline to drop a course, which at Boise State is the end of the 6th week of class.  
Unfortunately, by that time it is too late either for the student to switch to a lower level class that 
might be more appropriate, or for that student's vacated seat to be occupied by someone else.   
 
It is worth exploring additional activities designed to refine or confirm placement.  Such 
activities would take place early in the term so that students identified as unlikely to succeed 
would have a realistic option to move to different courses.  An additional benefit would be that 
seats vacated by students exiting this early in the term would be available to other students 
waiting to gain access.  Boise State University allows students to add or drop classes freely 
throughout the first week of instruction.   This fact, together with the broad informal agreement 
that students should not miss more than a week of a semester-long math class, led us to focus on 
placement activities that can give a signal to the student no later than the end of the first week of 
class.  
 
The two courses used in this student were Precalculus, which in the fall of 2011 had 10 standard 
sections with 376 students receiving a grade (including W), and first semester Calculus, which in 
the fall of 2011 had 10 standard sections with 378 students receiving a grade.  
 
ALEKS 
 
ALEKS (Assessment and LEarning in Knowledge Spaces) has been described in detail 
elsewhere6,7, but briefly it is a battery of online adaptive tools that permit a student to work 
problems in a given course of study and get immediate feedback. It was designed to be used as a 
learning tool, and when used in this mode it includes a periodic assessment component that the 
student completes as part of their online learning.  
 
ALEKS may also be used in an assessment mode only.  This paper reports on results from this 
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mode only.  The first use of ALEKS in an assessment mode (separate from the learning mode) to 
help assure proper student placement into a Precalculus or Calculus course occurred in fall of 
2007 at the University of Illinois; the second university to use ALEKS in this mode was Boise 
State Universit, which deployed it in fall of 20086.  Boise State University adopted the same 
implementation strategy as the University of Illinois, which involved requiring a benchmark 
score during an unproctored ALEKS assessment. Achievement of the benchmark score by the 
end the add/drop cycle constituted 10% of the student’s grade in the upcoming course. If this 
benchmark was not achieved, the underlying assumption was that students would self-select to a 
lower level course, rather than receive a zero for this rather heavily weighted first assignment. 
The benchmarks used initially by the University of Illinois and by Boise State were 40% and 
70% for Precalculus and for Calculus, respectively.   Boise State has retained these benchmark 
levels; however after a couple of years, the University of Illinois shifted theirs to the current 
levels of 50% and 70%8.  Since these first implementations of ALEKS in assessment mode, a 
number of other universities have also implemented ALEKS in some manner as an assessment 
strategy; for example, Arizona State University9, University of Arizona10 and the University of 
Montana11.  
 
At Boise State University, ALEKS is used both as a confirmation of placement and as a learning 
tool, but the modules that were used in the courses described in this paper were mainly the 
assessment and reassessment modules for Preparation for Calculus.  Different modules are 
used in different courses and settings.   Further details of this implementation are given in 
Bullock, et al6. 
  
ALEKS at Boise State University 
 
Since fall of 2008, the ALEKS Preparation for Calculus assessment (APFC) has been required 
for both Precalculus and Calculus I.  The assessment has been required for summer courses as 
well as fall and spring.   Data for summer classes has been omitted from this paper because there 
are not very many students in the summer classes, and because there are other inconsistencies 
between summer and regular terms that complicate comparisons. The chief source of these 
inconsistencies is the fact that summer term is 8 weeks long while fall and spring are 16 weeks 
long, which makes distinguishing between the first week versus the first two weeks difficult.   
 
Students who attend orientation functions that precede the regular semesters are told about the 
assessment requirement and encouraged to take it as soon as possible.  All enrolled students 
receive email reminders of the requirement in the weeks that lead up to the start of each 
semester.  A few students assess well in advance, but most wait until the start of classes or the 
week before to attempt the assessment. 
 
The APFC assessment is graded pass/fail, but weighted approximately equal to a midterm exam.   
Since the assessment is given online with no proctors present there is the potential for cheating.  
No studies have been done at Boise State to examine the extent of the possible cheating, but the 
spread of scores indicates if extensive cheating is going on, it is limited in its effectiveness.  As 
Table 1 shows, only about half of the students generally attempt the assessment before the 
semester begins.  It is worth noting that while early drops are about the same in Precalculus and 
Calculus I, the overall success rate for the assessment in Calculus is generally higher, while the 
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overall percentage of students taking and passing the assessment by the first day of class is 
generally higher in Precalculus.  While this might be interpreted to mean the assessment had 
more impact in Precalculus, there are other possible explanations.  There may be a lot more 
students in the Precalculus course who already have seen a lot of the material and for whom the 
assessment is relatively routine.  It may also be easier to cheat on the Precalculus assessment, 
where a score of on 40% suffices, contrasted with the 70% required for Calculus I. 
 
There have been some efforts by individual faculty to try to correlate final grades with scores on 
the APFC.  While there may be useful pedagogical information to be found in that statistic, it is 
not clear that it is the most fruitful approach to discovering if the APFC is useful as a 
confirmation of placement.  In order to investigate that question, data from fall and spring 
semesters from fall 2003 through fall 2011 were collected and analyzed.  Since the APFC 
assessments began in fall 2008, this meant ten semesters without using APFC and seven 
semesters using AFPC.  Among others, the following statistics were gathered: 
 

• The percentage of students who dropped the course.  This included early drops, defined 
as drops no later than the 10th day, which thus cause the course to be removed the 
transcript; drops between the 10th  day and 6th week, which are recorded as a W on the 
transcript; and complete withdrawals from the university, which if they are done after the 
10th day are recorded as a CW on the transcript. 

• The percentage of students who must take the course again; that is all drops as described 
above, plus all D’s and F’s. 

• The percentage of students who drop before the first day of class. 
• The percentage of students who are early drops, as described in the first bullet. 
• The ratio of early drops to all students who must take the course again, i.e., the ratio of 

the number of students who drop before the tenth day to the total drops plus D’s plus F’s.  
This last statistic has been dubbed the Early Drop Index or EDI in this paper. 

 
The EDI is proposed as an indicator of the effectiveness of any regime of placement.  A high 
EDI indicates that most people dropping the class are doing so before they have a substantial 
investment in the course and suggests that the placement regime is good at allowing students to 
either select an appropriate course or make an early adjustment to a more suitable course.  A low 
EDI indicates that many people are failing to master the material even after a significant 
investment in the course.  Our hope is that adding a confirming assessment to the traditional one 
shot placement mechanism will achieve a higher EDI.    
 
The EDI is an imperfect measure of placement effectiveness, as there are many reasons why a 
student might perform poorly in a class, even if placed correctly. The instructor in the class may 
be ineffective; the student may experience a significant or traumatic event outside of the class 
and have to readjust priorities; the student may re-evaluate his or her goals mid-semester and 
lose interest in the course; or any number of other things.  However, given a single university 
environment with a stable cadre of instructors, many of these issues will balance out over time.  
Since placement is the only aspect of the course that has had a major overhaul during the study 
period, it is reasonable to expect that any change in the EDI over this period is at least partly 
attributable to the addition of a confirming assessment after the initial placement.  
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Ultimately, students who withdraw from a course do so of their own volition.  Students have 
access to academic advisers and sometimes discuss the decision to drop with their instructor.  We 
have no data on how much of this discussion goes on and how much it influences a student’s 
decision to withdraw or continue with the course. 
 
Results 
 
All results described here are extracted from the data attached in Tables 1 and 2 (appendixes).  
Our central question is what, if any, changes to EDI occurred when ALEKS was implemented in 
fall 2008.   Here is EDI for Calculus graphed against time, from fall 2003 to fall 2011.    
 

 
 
 
There is a notable jump in EDI in the fall 2008 semester, then a return to relatively low EDI one 
term later, followed by a much less volatile sequence of semesters with fairly high EDI.   The 
change from pre-ALEKS to post-ALEKS is more evident in the next two graphs:  one shows the 
linear trend in EDI up to spring 2008, and the other shows trend after 2008.   
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There is a clear difference in behavior before and after ALEKS.   Through spring 2008 the EDI 
trend was nearly flat at about 54%.    After ALEKS the trend is again nearly flat, but jumps to 
about 63.5%.   The corresponding graphs for Precalculus show much less impact.  There is a 
similar upward jump in EDI in the implementation semester (fall 2008), but general behavior as 
shown in the before and after trends does not seem much affected.   The pre-ALEKS trend 
averaged an EDI of 61.3%, while the post-ALEKS trend averaged 62.5%.     
 

P
age 25.1433.7



7 
 

 
 

 
 

P
age 25.1433.8



8 
 

 
 
 
 
 
Analysis 
 
The data provided here show almost no difference in EDI at the break point in fall 2008 for 
Precalculus, but there is a reasonable difference for Calculus.  Students and instructors seemed to 
be on board with the idea of the assessment, since by the deadline at the end of the first week, at 
least 98% of the students had completed a satisfactory assessment.  This indicates relatively 
modest pushback – few instructors were letting students off without taking the assessment, and 
relatively few students were trying to get away without taking it.  It is reasonable to assume that 
some of the students who did not take the assessment by the deadline had already decided to 
drop the class, but had not formally done so yet.  Anecdotal evidence suggests that there are 
always some students enrolled in these classes who have no intention of finishing but put off 
dropping the class, or never bother to do it at all. 
 
The assessment appears to be providing some value for Calculus and has been retained for spring 
2012.  After using the assessment from fall 2008 through fall 2011, it was judged that the 
effectiveness for Precalculus was not worth the costs and inconvenience.   
 
Further Study 
 
Data is presently being gathered for a longitudinal study for these same students to see how they 
performed in Calculus 2 and possibly some non-math courses that use Calculus.  Pass rates and 
grades are also being examined to see what kind of predictive effect a score on the assessment 
might have.   
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Appendix. 
 
The following two tables contain the grade and drop data for the study period for Precalculus and 
Calculus.  Column O contains the EDI or Early Drop Index, described above.  “Pre drops” are 
drops that occur before the first day of class; “10 day drops” are drops that occur during the first 
10 days of class.  “10 days” is a term of art at Boise State  – it usually means 2 weeks.  Fall 2008 
is the first time that assessments were used, so there is shading change starting in that row.  All 
of these data reflect only genuine drops – formally, when a student switches sections it is 
recorded as a drop followed by an add.  Those drops are not included in the data.   
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Term A B C D F Pre drop 10 day drop W, CW, Late Total Drop % Drop+F+D % Pre drop % Pre+10 Dr % EDI Pass Rate
Sp 2003 50 80 86 48 99 166 78 26 633 42.7% 65.9% 26.2% 38.5% 58.5% 55.5%
F 2003 55 77 91 53 93 232 94 29 724 49.0% 69.2% 32.0% 45.0% 65.1% 56.0%
Sp 2004 26 69 73 41 41 136 61 20 467 46.5% 64.0% 29.1% 42.2% 65.9% 62.2%
F 2004 35 80 93 37 72 185 76 25 603 47.4% 65.5% 30.7% 43.3% 66.1% 60.8%
Sp 2005 23 36 63 21 85 110 53 24 415 45.1% 70.6% 26.5% 39.3% 55.6% 48.4%
F 2005 36 49 63 35 130 180 87 23 603 48.1% 75.5% 29.9% 44.3% 58.7% 44.0%
Sp 2006 33 47 54 27 61 141 58 22 443 49.9% 69.8% 31.8% 44.9% 64.4% 54.9%
F 2006 42 79 70 23 83 142 62 61 562 47.2% 66.0% 25.3% 36.3% 55.0% 53.4%
Sp 2007 27 62 37 25 53 123 59 33 419 51.3% 69.9% 29.4% 43.4% 62.1% 53.2%
F 2007 69 113 87 32 84 179 65 40 669 42.5% 59.8% 26.8% 36.5% 61.0% 63.3%
Sp 2008 34 52 52 26 72 127 67 22 452 47.8% 69.5% 28.1% 42.9% 61.8% 53.5%
F 2008 72 89 77 36 77 203 98 13 665 47.2% 64.2% 30.5% 45.3% 70.5% 65.4%
Sp 2009 23 47 58 20 105 132 72 28 485 47.8% 73.6% 27.2% 42.1% 57.1% 45.6%
F 2009 35 70 96 44 112 246 68 36 707 49.5% 71.6% 34.8% 44.4% 62.1% 51.1%
Sp 2010 20 66 52 33 77 128 56 11 443 44.0% 68.8% 28.9% 41.5% 60.3% 53.3%
F 2010 51 58 76 42 106 212 92 9 646 48.5% 71.4% 32.8% 47.1% 65.9% 54.1%
Sp 2011 31 53 60 24 87 119 64 21 459 44.4% 68.6% 25.9% 39.9% 58.1% 52.2%
F 2011 49 72 95 35 94 216 63 33 657 47.5% 67.1% 32.9% 42.5% 63.3% 57.1%
Totals 711 1199 1283 602 1531 2977 1273 476 10052 61.7% 54.7%

Precalculus
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Term A B C D F Pre drop 10 day drop W, CW, Late Total Drop % Drop+F+D % Pre drop % Pre+10 Dr % EDI Pass Rate
Sp 2003 26 39 51 31 45 63 24 13 292 34.2% 60.3% 21.6% 29.8% 49.4% 56.6%
F 2003 44 79 65 35 90 140 41 24 518 39.6% 63.7% 27.0% 34.9% 54.8% 55.8%
Sp 2004 42 36 47 13 88 85 26 17 354 36.2% 64.7% 24.0% 31.4% 48.5% 51.4%
F 2004 37 48 41 30 73 149 31 39 448 48.9% 71.9% 33.3% 40.2% 55.9% 47.0%
Sp 2005 24 37 39 27 71 87 25 26 336 41.1% 70.2% 25.9% 33.3% 47.5% 44.6%
F 2005 35 47 64 24 72 151 41 35 469 48.4% 68.9% 32.2% 40.9% 59.4% 52.7%
Sp 2006 28 31 47 17 54 98 23 23 321 44.9% 67.0% 30.5% 37.7% 56.3% 53.0%
F 2006 37 57 58 18 64 131 36 23 424 44.8% 64.2% 30.9% 39.4% 61.4% 59.1%
Sp 2007 25 62 56 19 59 80 18 14 333 33.6% 57.1% 24.0% 29.4% 51.6% 60.9%
F 2007 75 79 67 32 62 155 44 32 546 42.3% 59.5% 28.4% 36.4% 61.2% 63.7%
Sp 2008 58 46 45 36 71 76 39 21 392 34.7% 62.0% 19.4% 29.3% 47.3% 53.8%
F 2008 69 91 69 25 67 168 61 17 567 43.4% 59.6% 29.6% 40.4% 67.8% 67.8%
Sp 2009 40 56 72 28 64 81 34 15 390 33.3% 56.9% 20.8% 29.5% 51.8% 61.1%
F 2009 77 92 65 33 76 186 51 24 604 43.2% 61.3% 30.8% 39.2% 64.1% 63.8%
Sp 2010 42 72 84 33 72 148 59 12 522 42.0% 62.1% 28.4% 39.7% 63.9% 62.9%
F 2010 80 118 84 31 71 181 62 24 651 41.0% 56.7% 27.8% 37.3% 65.9% 69.1%
Sp 2011 36 69 97 22 51 150 48 24 497 44.7% 59.4% 30.2% 39.8% 67.1% 67.6%
F 2011 51 76 104 47 79 211 56 22 646 44.7% 64.2% 32.7% 41.3% 64.3% 60.9%
Totals 826 1135 1155 501 1229 2340 719 405 8310 57.7% 58.4%

Calculus 1
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Coherent Calculus Course Design:   
Creating Faculty Buy-in for Student Success 

Abstract  

This paper recounts the process used and results achieved as first-semester Calculus at Boise 
State University was transformed over a period of approximately 16 months from a collection of 
independent, uncoordinated, personalized sections, into a single coherent multi-section course. 
During the process of this transformation, section size and the instructor pool remained relatively 
constant; however, profound changes were made across all sections in terms of pedagogy, 
homework, timing of course content, grade computation and exam content.  

The motivation for focusing on Calculus I arose from a five-year National Science Foundation 
Science Talent Expansion Program grant that was awarded in 2010 to a multi-disciplinary team 
that spanned engineering, mathematics and science. A major grant objective was to raise first-
semester, full-time retention of students in STEM majors.  The projects supported several year-
long faculty learning communities (FLCs) of about 10 instructors each.  With significant 
involvement from mathematics faculty, the first two FLCs prepared the ground for pedagogical 
reform of calculus. In 2013-14, a final FLC was created with the express purpose of 
implementing consistent, student-learning focused strategies across several section of calculus.  

The specific approach used to design a coherent calculus course was tied to a decision made by 
the FLC to use identical homework assignments, with common due dates and times. The FLC 
structure facilitated buy-in and rapid communication and feedback between instructors, who as 
they came to agreement on the exact homework exercises, also came to agreement on learning 
goals and content for each individual lesson. Although there was no explicit attempt to have all 
instructors adopt the same pedagogy or classroom practices, because FLC discussions frequently 
turned to pedagogy, all members of the FLC chose to adopt a similar pedagogical approach 
which included devoting class time to solving problems, working in small groups, facilitated by 
the lead instructor and a learning assistant. In subsequent semesters, all calculus instructors have 
opted in to the common, coherent approach to the course (except for those teaching online or 
honors sections). 

Pass and withdrawal rates pre and post implementation reveal an increase in pass rate of 13.4% 
and a drop in withdrawal rate of 3.9% as a result of the project. Results from anonymous faculty 
surveys show that faculty in the project changed their teaching practices in Calculus, that they 
observed positive effects of this in their classrooms, that they took advantage of the FLC to learn 
from their colleagues and that their experiences with Calculus will have spillover impacts in their 
other classes. Results from student surveys show, among other things, that students were aware 
of the pedagogical difference in terms of their classroom experience, with some expressing 
discomfort in terms of working in groups to solve problems in class and not receiving a 
traditional lecture experience and others reporting group work as a valuable aspect. 

  P
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Introduction: Why Design Coherent Calculus? 

Over the past six years, STEM enrollment at Boise State University grew from 2,421 to 3,778, 
representing more than half of the university’s undergraduate enrollment growth over that time.  
This growth exposed three major problems that had been lurking in the Calculus sequence.  

First, there was a lack of alignment of content, despite the presence of a guiding master syllabus 
and a common textbook. Second, there was a lack of alignment in terms of assessment.  Pass 
rates varied widely from instructor to instructor, creating a strong sense in the minds of students 
and faculty in other departments that success in calculus was dependent on luck of enrollment: 
“Who you took” mattered more than “What you learned.” Third, the average pass rates were 
quite low.  As a reference point, the average pass rate across the 2005-2006 academic year for 
Calculus I was approximately 51%.1 

Calculus I at Boise State University serves a wide range of students.  For most, the course is a 
gateway requirement for their degree.  Much of the content in the typical Calculus I offering was 
selected and focused toward mathematicians, rather than selected for relevance to the study of 
engineering or science.  Too often, and for too many, Calculus functioned as an artificial barrier 
to progress, resulting in dissatisfaction among constituent departments and their students.  These 
are not unique to Boise State University. Calculus as a barrier and its apparent lack of relevance 
are well known and longstanding problems. Potential solutions have been identified at many 
other institutions.   Our efforts at reform were heavily influenced by a successful first-year 
engineering program at Wright State University2 and informed by research summarized by 
Bressoud, et. al.3    

Boise State University’s efforts have been successful because we identified and capitalized on 
two important sources of momentum:  1) efforts to reframe calculus content and 2) faculty 
development supporting calculus instructors.  In 2010 we were awarded a National Science 
Foundation Science Talent Expansion Program grant, specifically aimed at increasing STEM 
graduates by improving first-time, full-time student retention. One of the elements of the project 
was the support of three, year-long, STEM-specific faculty learning communities (FLCs) (e.g. 
see Cox, 2001).4  Based on interest from numerous math faculty, coupled with Calculus I 
leadership by one of the co-PIs on the grant, the latter two FLCs became exclusively focused on 
Calculus. These FLCs were connected to work done by one calculus instructor to reframe his 
calculus content toward that needed by future engineers and scientists.   

This manuscript first describes the activities that led to the creation of Coherent Calculus at 
Boise State University.  This is followed by presentation of the impact of the reformed calculus 
on students, student success, the faculty involved, and campus culture in general. 
 

Activities Leading to Coherent Calculus 

The faculty member who emerged as the Calculus I project leader had been refining how he 
taught his section over approximately 10 semesters, guided by the principle that Calculus should 
have relevance for students in constituent departments. Between 2004 and 2012 he taught 
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Introduction to Engineering, had an engineering faculty member sit in on his calculus course,5 
participated heavily in developing ways for students to prepare themselves through on-line 
approaches and more. A revised Calculus I course emerged over time, with content reshaped to 
adhere to these principles:  

- Whenever possible, students work with data sets and/or continuous models selected from 
actual physical, biological, financial or other applied models. 

- Whenever possible, Calculus concepts are introduced and motivated by application to 
these models and data sets.  

- Whenever possible, content is presented using notation, language and conventions of the 
disciplines from which the models are taken.  

- As much as possible, content will be relevant, recognizable, and applicable in subsequent 
STEM coursework. 

- All content will be accessible from an intuitive or practical viewpoint.  In particular, the 
level of abstraction will be significantly less than typically found in Calculus I.  

 
This approach stands in contrast to traditional calculus which is more abstract, more devoted to a 
formally rigorous foundation based on limits and continuity, and lightly dusted with applications.   
Thematically the revised Calculus I class is focused on three outcomes: 
 

- Develop geometric and physical intuition for derivatives and integrals. 
- Master the standard rules for symbolic computation of derivatives and some basic 

integrals.  
- Apply both intuitive understanding and rules mastery to solve problems.   

 
As the Calculus I faculty leader was reshaping the content he was also moving to a more active-
learning pedagogy. The course design that eventually emerged had the following features: 
 

- Many short homework assignments with immediate computer driven 
feedback/assessment, typically due on a two-day cycle. 

- Each assignment designed along learning cycle principles to target one or two specific 
learning goals. 

- The vast majority of class time devoted to students working in small groups on these 
homework assignments.    

- In-class work facilitated by lead instructor and peer learning assistant.   
- Additional and more involved weekly work with written feedback.   

 
The redesigned course was effective, but it was only one section of approximately a dozen taught 
each semester. Its impact on student success was therefore muted, and, because it was limited to 
a single faculty member, any benefits were not institutionalized.   
 

In parallel with this focus on calculus content, we had begun engaging STEM faculty to consider 
course design and evidence based instructional practices. This engagement was done primarily 
through a faculty learning communities (FLCs) strategy. An FLC is a type of community of 
practice in which a group of 8-10 faculty “engage in an active, collaborative, yearlong program 
with a curriculum about enhancing teaching and learning and with frequent seminars and 
activities that provide learning, development, the scholarship of teaching, and community 
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building.”4, p. 8 As described in the literature, these groups generally draw faculty from multiple 
disciplines. The underlying logic of using an FLC to promote faculty change is that 
“undergraduate instruction will be changed by groups of instructors who support and sustain 
each other’s interest, learning, and reflection on their teaching.”6 Indeed, studies have shown that 
faculty participation in FLCs increases interest in the teaching process, enhances understanding 
and influence of the scholarship of teaching and learning, increases reflective practice, and 
promotes exploration of new teaching strategies.7-13    
 
The Center for Teaching and Learning at Boise State University has had an FLC program since 
2007. With the 2010 STEP grant funding, one STEM-focused FLC was launched in the 2010-
2011 academic year. The next two, held in 2012-13 and in 2013-14 were focused on calculus 
only, as a result of intense interest by math faculty. The first calculus-focused FLC was different 
than other FLCs that had been supported and differed from FLCs described in the literature in 
important ways. Because it involved faculty from a single discipline focused on a single course, 
the line between individual course-based teaching projects and a collective effort to improve a 
multi-section course was blurred. This is reflected in the goal that participants crafted for 
themselves: 
 

The purpose of this FLC is to explore and experiment with strategies at both the individual 
and institutional level in order to make recommendations about: 

 

1. practices that will substantively impact student learning and success in calculus 
2. structures within which these practices can occur 

 

Throughout the experience, the community held in tension the practice of a “traditional” FLC, in 
which the focus was on mutual support of individual projects and exploration, and that of a 
group focused on consensus-driven, deliverable changes to calculus. Teaching projects and 
pedagogical exploration were focused at the individual instructor/section level, with the FLC 
meetings spent discussing the projects and their ongoing results and assessment. At the same 
time, meetings enabled a collective exploration of course content (e.g., scope and emphasis of 
various calculus topics). Likewise, a decision was made in the second semester of the FLC to co-
author three questions that could be placed on all final exams, creating an opportunity to “try on” 
and de-brief the practice of common exams across sections. The FLC also allowed the group to 
place their exploration in the context of STEM student success at the institutional level. Despite 
the goals the group set for itself, no clear recommendations for common practices or institutional 
structures emerged at the end of this FLC. However, the seeds for the next step, the collaborative 
creation of a coherent calculus course, coordinated across sections, were planted.   

 
Creating Coherent Calculus 

In the 2013-14 academic year these two paths converged. The FLC structure was used to bring 
together a group of Calculus instructors with the concrete goal of delivering a multi-section 
calculus course with agreed upon common materials. This group was led and facilitated by the 
instructor who had developed the revised calculus content and related pedagogy. His course 
materials formed the starting point for adoption of a consensually agreed upon course structure.   P

age 26.355.5



Recruitment for the Coherent Calculus FLC took place in October of 2013 via email to 18 
instructors who were either scheduled for a section of Calculus I for spring 2014 or known to be 
otherwise interested in this or similar projects. Several had already participated in one of the 
previous STEM or Calculus FLCs. Participants were offered a course reduction or an additional 
stipend for participating and were expected to dedicate ~4-5 hours/week across 20 weeks of the 
project. The recruitment email stated the objective: 

“[The project] is about designing a Calculus I course that can be adopted by a reasonably 
large number of instructors with a high level of coherence. Ideally this means that all 
sections assign the same homework, all sections use the same quizzes and other 
assessments, all sections take the same or similar exams, and --- most importantly --- all 
sections are focused on the same learning outcomes and are using similar methods 
(pedagogy) to get there.  [It is] loosely defined … since no such course design yet exists.” 

 
The recruitment email also detailed the expectations and commitments required of 
participants.   

 
   If you participate in [the project] your duties would be: 
 Teach at least one section of [Calculus I] in the spring of 2014.  
 As much as possible, conduct your section coherently with all the other participants in this 

project. The extent to which this is possible is highly dependent on the next bullet item. 
 Join the course design and development team. The team will meet weekly, starting this 

semester and continuing until the end of Spring 2014. The team will be charged with 
designing, testing, and refining all of the homework and assessments that will eventually be 
the agreed upon course materials.  It is expected that the course materials will be tested in 
your sections of Calculus I in the spring of 2014. The aim is to have something ready for 
potential broader use in the Fall of 2014.   

 

The invitation was extended to instructors of all ranks. Six made the full commitment to join the 
design team: one tenured math faculty member (project lead), three full time lecturers, and two 
adjunct faculty.  Four others (2 tenured and 2 lecturers) participated in peripheral roles, providing 
occasional input or feedback. The core group of six instructors had been assigned to 8 of the 13 
sections of Calculus I in the spring 2014 semester. The design team convened in November of 
2013 to begin work. 

The task for the FLC was to agree on as many elements as possible for a common course 
structure that would be rigorously defined and locked in for all sections. The FLC quickly 
arrived at consensus on some key structural elements. They agreed to adopt a common syllabus 
that locked in specifications on grading, weighting of homework, quizzes and exams, final letter 
grade cutoffs, and typical policies. More importantly, they agreed to two critical principles of the 
course design:   

 All sections would use identical homework assignments, both daily computer graded 
work and weekly instructor graded work.  

 All sections would use identical timing of homework. All dues dates were identical and 
synchronized to class start times for individual sections. 

The agreement on homework and timing of due dates meant that the team would also be unified 
on the content and topics to be covered in every class session, because class sessions would 
necessarily be built around that day’s homework.  
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They then began their most important task:  agreeing on the exact homework exercises, and 
therefore the learning goals and content, for each individual lesson.  

This was the critical element.  The entire project is based on the principle that coherence and 
course coordination are best achieved by agreement on homework, which in turn creates a 
common understanding of the learning goals targeted by each homework assignment. The FLC 
took as a starting point the materials already developed by the project lead in previous semesters. 
These were debated, vetted, and revised as needed until the group was comfortable with the 
content. This level of detail was applied to the first five weeks of course material. At this point 
the group had to commit to the use of less carefully reviewed material, because the spring 
semester was about to start. 

As a point of strategy, there was no explicit attempt to have all instructors adopt the same 
pedagogy or classroom practices. However, FLC discussions frequently turned to pedagogy, 
partly because the pre-existing course materials had been built with a particular model in mind 
but also due to professional interests of the FLC members. As implementation rolled out, all 
members of the FLC chose to adopt something similar to the model used by the lead instructor: 
class time devoted to solving problems, working in small groups, facilitated by lead instructor 
working with learning assistant (described earlier).   

During the spring 2014 semester, while the FLC members were all teaching their courses, the 
weekly meetings continued. Approximately half of the time was spent on continuation of the 
process of examining and vetting remaining course material.   All remaining time was consumed 
by logistical issues and in discussions of how to create, deliver and grade exams.   

Most homework was computer graded with no instructor input or feedback. However, each week 
there was one written assignment graded by hand.  All of these assignments were identical for all 
sections, but each instructor graded these independently. There was much discussion about the 
value and costs of attempting a standardized rubric.  It was judged that the benefits were not 
worth the time and work required to come to such detailed agreement. Instead, each instructor 
used these assignments to define the expectations for written work that would be applied on their 
exams.  

Instructors created separate exams. However, each exam cycle included a full review of every 
exam by every other FLC member. This review, plus the common base of homework and 
learning goals, led to a reasonable amount of similarity among exams. Instructors then graded 
their own exams.      

One of the project goals was to build a structure that could be scaled up in future semesters.  For 
the fall 2014 semester four of the six design team members were assigned Calculus I sections by 
the department chair. All chose to continue using the material and continue working as a team to 
refine the course.  In the weeks before the fall 2014 semester all other instructors assigned to a 
Calculus I course were offered the option of opting into the common course structure.  The offer 
was made with no conditions – so an instructor could simply take all of the developed material 
and modify it to suit their tastes. What actually happened was that every instructor (except for 
online and honors sections) chose to adopt all of the prepared material, all of the structure in the 
common syllabus, and some form of the active learning pedagogy. There were no extra 
incentives for this, so their decisions were presumably made on the basis of perceived intrinsic 
value. The result was a team of 8 instructors for fall 2014, four with prior experience from the 
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FLC. The instructor pool was too large to have a regular common meeting, but the new 
instructors were able to find support and mentoring when needed by consulting with the 
returning instructors.    

The Impact of Coherent Calculus 

The impact of Coherent Calculus at Boise State University can be measured in several ways. 
Below we describe the impact of the project based on student success and from the perspective 
of students and faculty involved as seen from course instructor surveys completed by students 
and by surveys on the course completed by faculty who elected to participate in an anonymous 
survey. We also describe the impact on faculty and comment on the degree of institutionalization 
of the project. All data discussed below were collected and analyzed after the conclusion of the 
fall 2014 semester, so the described effects represent the impact of two semesters of Coherent 
Calculus.   

Student Success as Measured by Course Grades 

Figures 1 and 2 capture the effect of the project on Calculus I as seen by enrollment and final 
grades across all sections over time. Figure 1 details the portion of Calculus I enrollment that, 
over time, has been affected by the adoption of the new Calculus materials and pedagogy.   
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Figure 1: Total student enrollment in Calculus I (blue) and students enrolled in coordinated 
Calculus I (yellow). 
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Figure 2, using the same time axis, shows the university-wide pass rate in Calculus I, (number of 
A, B, C grades divided by total 10th day enrollment.)  The results show a clear correlation 
between the implementation of Coherent Calculus across multiple sections (beginning in Spring 
2014) and improved pass rates in the course.   

 

 

 
Figure 2: Pass rate in Calculus I as a function of time, spring and fall semester. 

 

In order to further drill into student grades, an examination of course grades across six semesters 
was conducted. This included four semesters prior to the beginning of the project and two 
following the formal course coordination. Across the ten faculty who participated, six had taught 
Calculus I both before and after the transition, see Table 1. 

The following observations are noted from this data. First, five out of six instructors showed 
marked increases in pass rate. The pass rate across all six instructors increased from a weighted 
average of 60.5% to 73.9%. Of particular note: the percentage of students earning A and B 
grades increased from 34.4% to 48.6%, an increase of 14.2%. Finally, the withdrawal rate 
decreased markedly, from 4.7% to 0.8%, a drop of 3.9%. Put in student numbers, for these 590 
students following the transition, 23 more students persevered to complete the course with a 
passing grade than might have otherwise, and 84 more students received grades of A or B. 
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Table 1: Student grades awarded in Math 170 before and after the transition, by instructor. 
 
Before the transition, four semesters 

Instructor  N  A  B  C  DF  W  CW  %AB  %ABC  %W  %W+CW 

1  192  44  50  52  40  5  1  49.0%  76.0%  2.6%  3.1% 

2  39  5  9  11  11  2  1  35.9%  64.1%  5.1%  7.7% 

3  168  8  22  62  57  12  7  17.9%  54.8%  7.1%  11.3% 

4  215  27  43  42  93  7  3  32.6%  52.1%  3.3%  4.7% 

5  78  17  11  13  32  3  2  35.9%  52.6%  3.8%  6.4% 

6  115  18  24  30  31  9  3  36.5%  62.6%  7.8%  10.4% 

Total  807  119  159  210  264  38  17  34.4%  60.5%  4.7%  6.8% 

               
After the transition, two semesters 

Instructor  N  A  B  C  DF  W  CW  %AB  %ABC  %W  %W+CW 

1  97  23  31  27  13  1  2  55.7%  83.5%  1.0%  3.1% 

2  34  9  5  14  6  0  0  41.2%  82.4%  0.0%  0.0% 

3  64  6  21  19  17  0  1  42.2%  71.9%  0.0%  1.6% 

4  38  9  11  4  13  1  0  52.6%  63.2%  2.6%  2.6% 

5  141  25  44  31  40  0  1  48.9%  70.9%  0.0%  0.7% 

6  33  7  5  5  12  1  3  36.4%  51.5%  3.0%  12.1% 

Total  590  119  168  149  140  5  9  48.6%  73.9%  0.8%  2.4% 

 

Student Perspectives 

After two semesters of implementation, participating faculty were invited as part of this study to 
share their student end-of-course evaluation results (see Appendix A for details).  Of particular 
interest were comparisons of comments pre and post-implementation of Coherent Calculus.  Of 
the ten instructors who participated in the Calculus project, four had no record of teaching 
calculus prior to their participation. Of the remaining six, three elected to have their comments 
included as part of the analysis for this project. For these three instructors, all had taught at least 
one semester of Calculus prior to the project, and two of the three had taught the Coherent 
Calculus course for two semesters.  Fall 2014 (second semester after the project began in spring 
of 2013) to Fall 2012 or Fall 2013 comparisons were made.  

An analysis was conducted, using four of the end-of-course evaluation questions. Q1: Tell us 
about this course. What aspects of the course were most valuable? Q2: Tell us about this course. 
What barriers to learning, if any, did you experience in this course? Q3: Course Items. What 
suggestions do you have for improving the course? The last question analyzed was: Q4: What 
other comments, if any, do you have about the instructor, this course, or about this survey?  

We were particularly interested in comments that would elucidate student responses to the 
significant changes in the course with respect to content focus and pedagogy. A thematic 
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analysis revealed students comments in the following categories: WebAssign/homework, 
Pedagogy, Teacher, Learning Assistants, Exams, and Textbooks.   

The overwhelming majority of comments centered around pedagogy.  For most students, the 
opportunity to work in groups in a math class was quite different from what they would have 
experienced in the past. For example, while pedagogy was not mentioned in pre-Q1 responses, it 
was mentioned multiple times for two of the three instructors in post-Q1 (What was the most 
valuable aspect of the course). One student indicated: “Being led to connections of big ideas 
rather than told what they were…i.e. the instructor asked questions that would lead students to 
their own conclusions.”  Another mentioned: “Building understanding of larger concepts by 
gradually adding together many smaller concepts.” Many others, for two instructors, described 
group work as being a valuable aspect (post): “I really learned the value of teamwork. I worked 
hard to get a good grade in class, but I wouldn’t have done nearly as well as I did if it wasn’t for 
the people I sat with and worked with everyday.” Not surprisingly, many students also put 
comments about pedagogy under post Q2, barriers to learning experienced in the course. These 
all had a similar theme, describing discomfort with not being taught, or getting direct answers to 
questions. For example, “At times I felt like I wasn’t being taught, I was just told to read the 
notes and learning goals.” Or, “The instructor didn’t really teach…it seemed like we taught 
ourselves.” And, “A barrier I noticed was lack of time spent on actually learning the material…it 
seems that we spent most time just doing homework in class.” One was particularly blunt: “I hate 
the workshop theory, let teachers lecture and pass on what they know. Quit asking students to 
“discover” the concepts.” Some students were self-aware in terms of their own comfort level: 
“Sometimes I was frustrated that we didn’t lecture longer rather than doing homework, but as the 
semester continued I kind of got used to it.” The quantity of students who commented positively 
on pedagogy (post) (15) was approximately the same as those who commented negatively on 
pedagogy (post) (16).     

Pedagogy emerged again in terms of suggestions for improving the course (post-Q3) – a few 
students expressed a desire to have more lecture and less learning on their own: “Instruct the 
material in class instead of making the students figure it out on their own time.” It was also 
mentioned by a few students in terms of post-Q4 which asked for any other comments: “This is 
the second time I’ve taken calculus and it was a lot easier to understand because of the way it 
was taught,” and, “The whole concept of making the students figure it out on their own for this 
kind of class seems like it goes against the whole point of why we are taking this class and why 
I’m paying money for an instructor to teach the class when they don’t actually teach the course 
material.”   

Only minor and typical comments were made about teachers (e.g. teacher availability, clarity, 
etc.), textbooks (waste of money, not used enough) and exams. One instructor received a few 
comments about their exams, with one student suggesting they use the standard ones from the 
department – indicating an awareness of students across sections that such an option was 
available. 

WebAssign/homework was the only other significant emergent theme from student comments. 
Many students had been exposed to ALEKS, an online learning tool that provides very 
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articulated example problems, and expressed a wish for WebAssign to include examples of how 
problems are worked, for example, “It does not adequately assist students in learning. There is no 
immediate feedback when doing assignments other than a right or wrong answer. This makes it 
very difficult to understand what you have done wrong.” Complaints about WebAssign were 
numerous (N=13). One student however, remarked (post): “The homework was strangely 
satisfying and helped a lot with understanding topics.” 

These comments suggest that many students were aware of the pedagogical difference in terms 
of their classroom experience. That so many students remarked on pedagogy indeed indicates a 
significant shift had taken place. It is not uncommon for there to be resistance from students 
when there is a significant change in pedagogy from lecture format to a format where students 
are active in the classroom.14-16 In the future, faculty in the project could be better supported to 
help students transition to this more active learning environment. 

Interestingly, the analysis of course evaluations did not reveal any comments which indicate that 
students noticed or appreciated the shift in content focus. This is likely because most students 
didn’t have any basis for comparison; they didn’t know how it had been different before.  It is 
also the case that the shift in content focus was eclipsed by the shift in pedagogy for most 
students in the course. 

Faculty Perspectives 

After two semesters of implementation, the effectiveness of the project from the perspective of 
the faculty involved was assessed as part of this study using a five-question survey conducted at 
the end of the fall 2014 semester (see Appendix A for details).  The survey was distributed to the 
nine faculty members who participated in the Coherent Calculus project in fall 2013, spring 2014 
and fall 2014. The lead faculty member was left out of this survey. Eight of the nine responded.  
The survey asked about participant 
motivation, whether and how participation 
changed their teaching practices, 
participant’s opinions about student 
engagement, and what benefits there may 
have been to participating in the project. 
Most of the questions were open-ended so 
as to capture instructor perceptions without 
influencing their responses. The relevant 
survey questions are included in Appendix 
A. 

Instructors were asked, “What motivated 
you to participate in the coordinated 
calculus project?  Select all that apply. 
Select all that apply.” Results are shown 
in Figure 3.  Most participants were 
motivated by an interest in exploring new 

Figure 3: Instructor’s motivation to participate in 
coordinated calculus project. 
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teaching practices.  Approximately half the participants were motivated by factors that related to 
connections with colleagues. Two colleagues indicated “other” responses: one deemed it 
politically wise to join, and one replaced an instructor who had originally been in the project. 

When asked, “Did your participation in this project change your teaching practices in any 
significant way?” seven out of eight respondents indicated that it had. For respondents who 
answered “yes,” they were asked, “Please describe at least one feature of your teaching 
practice that is different as a result of your participation.” Six responded that they spent less 
time lecturing, with students spending time in class working on material on their own, e.g.: 
“Giving time in class for students to do more work and less just watching me do problems.” One 
commented here about increased student engagement: “The collaboration opened up different 
ways to present the same material. The major effect is that more students are staying engaged in 
the class. I started with 26 students and 25 took the last exam. I expect all 25-26 to participate in 
the final exam.”  

Importantly, the impact on pedagogy 
appears to extend beyond Calculus I, 
Figure 4. When asked if participation 
impacted teaching practice in other 
courses, five instructors selected “As a 
result of the project, I have considered 
changes to my practices in other classes” 
and two faculty indicated “As a result of 
the project I have implemented changes in 
other classes.” Only one respondent 
indicated that “Any changes were 
restricted to the Calculus course taught as 
part of the project. I have not changed my 
practices in other classes.”  

The next question asked, “In your 
opinion, was student engagement 
significantly different in your Calculus course, compared to your overall impression of 
student engagement in other courses you have taught?” Five out of eight respondents 
affirmed a significant difference. The follow on question asked “Please describe at least one 
thing that was different.” Two instructors commented on aspects related to attendance: “Since 
work was being done in class I had better attendance because students saw a direct impact in 
attending class,” and “This was different in the past where students didn’t engage in classroom 
lectures, ask questions and eventually stopped showing up in class.” Three respondents discussed 
aspects associated with working in class. One remarked, “By working in groups the students 
were able to discuss freely the concepts and algebraic simplifications. When they do it, they 
remember it. If I do it on the board, they have not gone through the whole thought process and 
often get lost.” Another indicated: “They are actively working, not just trying to pay attention.” 

Figure 4: How has participation in the Calculus I project 
influenced your teaching practices in other courses? 
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Finally, “Some of the groups of students spent more class time reasoning through the material 
rather than listening and taking notes.” 

Taken as a whole these survey responses indicate that faculty in the project changed their 
teaching practices in Calculus, that they observed positive effects of this in their classrooms, that 
they took advantage of the FLC to learn from their colleagues, and that their experience with 
Calculus will have spillover impacts in their other classes.   These conclusions are reinforced by 
one last survey question.   

The last survey question inquired, “Were there any other benefits to participating in the calculus 
project?” All eight respondents answered in the affirmative and described these benefits, which 
are summarized in Table 2.  

Table 2: Other Benefits from Calculus Project
It showed not only a willingness to work together in a teaching community but an actual desire to share one’s 
own thoughts about teaching calculus as well as listening to others. As a result all the participants were active in 
sharing their experience and improving the quality of their course.
It was helpful to have someone else's perspective on the tests that I had written.  They were open to discussion 
and revision (for the better).  Also helped me with my weakness of typos (form and from, sign and sing, etc).
Being able to bounce ideas off of other instructors and gain from each other's strengths.
Opportunity to see others' [instructors] assignments and how they approached course topics. 
Better instructor interaction and student understanding.
Group protection from student complaints.
Better instructor interaction and student understanding.
I think that the students who really bought into the program were able to reason through test questions better. 
They were better able to detect when they were making mistakes and had some ideas on how to fix them.
Getting to know students on a more personal basis rather than just as a name...believe it helped with classroom 
interaction and participation. 

 

Faculty Development and Institutionalization 

The project had the specific goal of creating and delivering a multi-section course using common 
course materials.  This was achieved.   However, there were deeper institutional and faculty 
development goals, including the following  

- Shift the teaching culture to be accepting of the trade-off of autonomy versus common 
course material and common grading standards.  

- Shift the culture of practice from individual responsibility for single sections to team-
based responsibility for a multi-section course.  

- Create and sustain conditions for regular exchange of ideas and practices between 
instructors.   

- Move faculty towards more active learning or student-centered pedagogy. 

That we have moved toward the achievement of these goals is evidenced by the fact that in the 
two semesters following the project launch (fall 2014 and spring 2015) all Calculus I instructors 
have been invited to voluntarily join the team and to have their sections use common materials.   
So far 100% of instructors outside of online or honors calculus have opted in. Every new 
instructor has opted into every feature of the coherent course. Also, in the last two terms the 
common structure has moved to include some common exams in fall 2014, and entirely common 
exams in spring 2015.  
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Discussion and Summary 

In summary, the project succeeded in creating a sustained culture of collaboration for the 
purpose of delivering Calculus I.  It had significant impact on the pedagogy used in Calculus I 
and it had the spillover effect of shifting faculty teaching practices outside of Calculus I.  The 
changes had a large effect on student success, including a profound impact on student success as 
measured by grades, as seen by an increase in pass rates, by an increase in the percentage of 
students receiving course grades of A and B, and by a decrease in withdrawal rates. The 
pedagogical emphasis on group work/collaboration, noted in student comments as being a 
“valuable aspect of the course,” may have profound and long-term impact on student persistence 
and success in major, due to the increased student engagement with one another and a possible 
future outside-the-classroom effect on student behavior.17, 18  

It demonstrated a viable path to course transformation that does not rely on a top down command 
structure. We could have designated someone to coordinate and manage the course.  That person 
might have enforced a common syllabus and grading policy, chosen an appropriate content focus 
and trained faculty in a particular pedagogy with requirements for their implementation. This 
paper describes an alternative strategy of cultivation, support and collaboration. It begins with a 
decision to agree on the homework. Next comes agreement on and definition of the skills and 
objectives that the homework is designed to deliver. This in turn gives definition to exams, 
grading practices, standards and course level objectives. Consensus on the higher level aspects 
flowed readily from the initial decision to agree on the homework. The end result was a 
significantly changed course that was consensually agreed upon and rapidly adopted by 
essentially all instructors without any coercion.  

Future Work  

While we view the positive outcomes as strong indicators of success, we also recognize that we 
must continue to attend to the sustainability of the project.  We have identified a second faculty 
member who will share managerial workload with the original project leader.  Together they can 
support instructors who come into the project.  Additionally, we will continue to provide faculty 
development both through the department and through the Center for Teaching and Learning to 
be sure faculty have what they need to teach the Coherent Calculus.  This will allow us to help 
faculty address areas of concern such as the fraction of students who perceive it would be better 
to be lectured to during class. 

The Calculus I project scaled up more quickly and achieved wider buy-in than was initially 
thought likely. While this is a clearly positive development, it means that Calculus II is now an 
urgent priority. The same project lead, working closely with one member of the FLC team, is 
currently launching a Calculus II project with the same general plan but an accelerated time line: 

 Spring 2015: reframe and revise content.  
 Fall 2015: form an FLC to review and revise content, creating buy-in along the way. 
 Spring 2016:  Launch a multi-section course. 

Although the Calculus I project originated in a move away from the traditional course content, 
there is one clear advantage to the traditional content – when students move on the Calculus II 
their instructors will expect a traditional Calculus I background.  While we are happy with the 
new Calculus I content as a self-contained course, there is a real possibility that it aligns poorly 
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with the traditional Calculus II content that students encounter one semester later. We have 
recently begun building tools to measure the effects of Calculus I reform on Calculus II students, 
as well as other downstream courses.  Future work will be informed by this data.  This is likely 
to impact both the Calculus II content currently being built and to indicate areas where the 
Calculus I content can be strengthened. Finally, the coordinator and instructors of Calculus III 
and Differential Equations are becoming interested in the Calculus I and Calculus II projects, so 
there will be additional collaboration up and down the entire course sequence.    

Awareness of the project has already spurred interest from those who teach outside the Calculus 
sequence. There are nascent efforts to apply the coordination model to Business Calculus and 
General Statistics. Two instructors of Linear Algebra have already run a course using common 
homework. And the group that oversees our multi-section Scientific Computing course is 
considering a similar approach. If successful, these efforts would achieve full coordination of the 
entire suite of service courses across every STEM or related discipline. 
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Appendix A:  

A.1 [[http://hausdorff.boisestate.edu/14spring170/gen_syllabus.htm ]] 

 

Survey 

Email 1: Script for email for recruitment of instructors: 

You are being asked to participate in the following research study, “The Effectiveness of the 
Implementation of a Coordinated Calculus Course and its Impact,” because you were part of the 
coordinated calculus project. Your feedback will be used at an aggregate level to evaluate the 
effectiveness of the implementation and its impact. 

Participation is voluntary and anonymous. X and Y are the co and principal investigators on this project. 
Results will be aggregated and shared with the calculus course coordinator and the Director, Center for 
Teaching and Learning who have worked on the project and some of the results may be reported in a 
publication or to the National Science Foundation.  

Because this study involves human subjects, informed consent is required. The first page of the survey 
contains an online consent form. Participating in the study should take approximately 30 minutes. The 
study has five questions, some of which are open response questions. 

Go to Survey [hyperlink] 

A.2 Faculty Participant Survey: 

This survey has 5 questions, some of which are open response questions. It is expected to take 
approximately thirty minutes to complete. 

1. What motivated you to participate in the coordinated calculus project?  Select all that apply: 

Less work compared to an independent section 

Opportunity for closer collaboration with other instructors 

Opportunity to explore new teaching practices 

A colleague advised you to join the project. 

Other:  (written response) 

2. Did your participation in this project change your teaching practices in any significant way?  Yes/no 

2a. (If yes from 2) Please describe at least one feature of your teaching practice that is different as a result 
of your participation.  

2b. (If yes from 2) Please select the statement that you most agree with: 

A. Any changes were restricted to the Calculus I course(s) I taught as part of the project.  I have not 
changed my practices in other classes. 

B. As a result of the project, I have considered changes to my practices in other classes. 

C. As a result of the project, I have implemented changes in other classes.  
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3. In your opinion, was student engagement significantly different in your Calculus I course, compared to 
your overall impression of student engagement in other courses you have taught.   Yes/no 

3a. (If yes to 3) Please describe at least one thing that was different.  

5. Were there any other benefits to participating in the calculus project? Yes/no 

5a. (If yes to 5) Please describe.  

Thank you for participating in this survey.   

A. 3: Email 2: Request to Instructors Regarding Course Evaluation Data: 

To understand how student perceptions of the course may have changed as a result of the coordinated 
calculus project, we would like to access your course evaluation data for Math 170. This data would be 
accessed without needing your assistance, (other than your permission) and rendered anonymous so that 
no identifying comments or other features can permit identification of you as the instructor (e.g. if a 
student would write, “Dr. Jones speaks too softly,” we would replace that with “Instructor 1 speaks too 
softly.”) Please indicate what level of access to your course evaluation data you would permit by reply 
email (reply A, B, C or D).  

A. No access to the course evaluation data collected for my course. 

B. Access to numerical data for these four specific questions only: 

1. The WebAssign homework was valuable to my learning. 

2. The weekly written homework was valuable to my learning.  

3. The in-class warm-up exercises were valuable to my learning. 

4. Class time used for students working on problems was valuable to my learning.  

C. Access to all numerical data, but not to student comments, from any semester going back three years. 

D. Access to the all course evaluation data going back three years. 
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Introduction 

Boise State University is a metropolitan public university in the state capital and the 
largest institution of higher education in Idaho. The College of Engineering was 
established in 1997 in response to regional demand for engineering education from 
Micron, Hewlett Packard, and other industry leaders. Despite the formation of the 
college, which in less than 20 years now has an enrollment of nearly 3000 students, 
there remains a steady and ongoing need for technically trained STEM graduates. For 
example, as of fall, 2015, the regional demand for computer scientists is estimated at 
10:1 or more as a result of the rich computer science industry located in Boise, with 
hundreds of small startups and dozens of mid-sized software companies. Thus, the 
project’s overarching goal was to increase the number of high quality, technically trained 
engineers and computer scientists who graduated with B.S. degrees. 

As a result of this demand for technically trained graduates, STEM enrollment at Boise 
State University has grown steadily for more than a decade. Between 2002 and 2008, 
STEM enrollment grew by ~1400 students; this growth was again seen between 2008 
and 2014. This relentless growth exposed several issues that the Idaho Science Talent 
Expansion Program (Idaho STEP) grant’s effort helped address. One of these was a 
very low first-year retention rate. At the time the grant was submitted, we had seen first-
time freshmen retention for the 2008-2009 academic year of only 57% for STEM 
majors.1 We had a pretty good idea why we had low retention – we had low pass rates 
in mathematics classes, for example. An example of this, was an average pass rate in 
2005-6 in Calculus I of only 51%.2 Thus, during the grant funding period, we had issues 
to resolve: we had very low retention in STEM majors, we had low pass rates in 
Calculus and other mathematics, engineering and science courses, and on top of it all, 
during the five-year grant funding period, the number of STEM majors kept steadily 
growing, fueled by the roaring regional demand for STEM professionals. 

Approaches Used and Results: 

Our project used three main approaches; we had a diverse leadership team, we 
focused on instructor development using year-long faculty learning communities, and 
we supported several, targeted curricular, extra-curricular and co-curricular activities for 
students. These are described below, with an emphasis on the first two strategies which 
distinguish this project from many others.  
A. Diverse Leadership Team: A highly diverse project team was selected by the 
Principal Investigator (PI Callahan) to participate as co-principal investigators (co-PIs) in 
the project. Our leadership team consisted of five members who brought diversity both 
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in terms of the position they held at the university as well as in their field of 
specialization. This diversity brought strength. It was enormously impactful, for example, 
to have the Chair of Mathematics and the Director of the Center for Teaching and 
Learning as co-PIs; this combination resulted in very significant engagement of 
mathematics faculty in professional development activities. One of the co-PIs was a 
lecturer in physics; with increasing numbers of entry level math and science courses 
being taught by full-time instructors, he brought a valuable perspective to the project. All 
of the leadership team routinely taught first year courses and had a strong affinity for 
student success. In forming the team who wrote the proposal, the PI selected three of 
the investigators based upon whom she had observed voluntarily showing up on a 
routine basis for summer orientation events. The team transcended college boundaries 
– while the PI was associate dean of the college of engineering, only one other co-PI 
was from engineering, with two other members of the team coming from the college of 
arts & sciences (physics and mathematics). Finally, our Director of the Center for 
Teaching and Learning, Shadle, as a chemist and an expert in STEM pedagogy was a 
natural fit for the project. The program activity she directed, providing three year-long 
STEM focused faculty and instructor learning communities (FLCs) proved to be highly 
impactful. Additional details about the FLCs, including details on implementation and 
how they evolved over time, are presented in the following section. 
B. STEM Faculty and Instructor Leaning Communities (FLCs): In reflecting on the Idaho 
STEP project at its conclusion, the leadership team believes the most impactful activity, 
by far, was the prolonged exposure to evidence-based instructional practices (EBIPs) 
that STEM instructional faculty experienced during this project; this is therefore the 
primary focus of this paper. We accomplished this professional development through 
the use of year-long instructional faculty learning communities (FLCs) that provided 
training on innovative teaching strategies. Faculty learning communities are a unique 
kind of community practice3 that have been shown to impact teaching practice.4 More 
than just a seminar series or faculty task force, FLCs have the potential to transform 
institutions into learning organizations. Three such FLCs were held, impacting thirty 
STEM faculty across five years.  
We approached this activity by holding our first STEM focused FLC, FLC-I in the first 
program year, fall 2010. Eight faculty participated, from chemistry, physics, 
mathematics, materials science and mechanical engineering; they had either tenure line 
or lecturer appointments. FLC-I began with a two-day retreat before the fall semester 
commenced, and continued across the fall and spring semesters with a meeting every 
other week. Each meeting lasted for 1 hour and 45 minutes and used discussion, 
presentation, reflection, sharing and readings to engage in deep exploration of various 
teaching and learning topics. To incentivize participation, FLC-I participants received 
$1500 to use for their research, and a one-course buyout that was funded by the grant. 
During the FLC-I meetings, facilitated by Shadle, participants rotated the responsibility 
for leading meetings. Each meeting focused on a specific topic relevant to STEM 
teaching and learning, including best-practice pedagogies, frameworks for student 
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development, strategies for assessment, dealing with student misconceptions, a 
discussion of institutional student success data, and how STEM disciplines frame the 
context for teaching and learning. 

The next year we spent assessing FLC-I by conducting an analysis of participants’ 
teaching logs or journals. A content analysis exposed trends and themes; the result of 
this analysis is presented elsewhere.5,6 One conclusion drawn from this analysis related 
to the critical importance of reflection: being a member of FLC-I played a critical role in 
supporting reflection, and likely primed participants for future changes in their 
teaching.7,8  

FLC-II and FLC-III were conducted in the third and fourth year of the grant. As a result 
of the STEM enrollment growth, the departments of physics and chemistry were unable 
to contribute faculty because they would not be able to meet student demand for their 
course offerings. Consequently, we focused FLC-II exclusively on the subject of 
Calculus I. Thus, FLC-II was a single-discipline group, comprised of ten members, 
focused on a single set of courses. Outgoing department chair, co-PI Bullock had been 
laying the groundwork for focused revision of this particular course for some time. While 
Shadle continued to facilitate FLC-II, Bullock’s leadership and effort was critical to the 
recruitment of faculty and also to its success. 

We funded this FLC slightly differently; four “core” faculty members received either 
summer salary or a course reduction buyout to focus on a project aimed at improving 
success in calculus. Six affiliate faculty attended meetings and contributed to the 
development and completion of the core faculty projects. The goal of FLC-II was to 
explore and experiment with strategies at both the individual and institutional level in 
order to make recommendations about practices that would substantively impact 
student learning and success in calculus, and structures within which these practices 
could occur. 
A critical development occurred; faculty in FLC-II who were teaching Calculus I piloted 
the use of three common final exam questions. The questions were co-written by the 
FLC-II faculty. This yielded several insights: 1) the grading on the questions was very 
similar between instructors, despite no agreed upon rubric; 2) students in all sections 
struggled with similar difficulties; 3) there were some student difficulties that seemed to 
stem from wording of the questions. The experiment was very useful in helping people 
to see potential value and challenges in having common exams, and laid the 
groundwork for improved assessment practices. 
The exploration conducted in FLC-II laid the ground work for Bullock to propose a 
common calculus offering. This was partially supported through an internal, provost-
funded grant in spring 2013. This offering involved some of the same calculus 
instructors as in the FLC-II, as well as some additional faculty. FLC-III continued to 
focus on Calculus I. Instructors worked together in the fall 2013 term to develop a 
common course design. In the spring 2014 term all instructors taught the course from 
the common materials. While adoption of common pedagogy was not required, an 
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active, problem-solving focused approach emerged through discussion and practice and 
all faculty teaching Calculus I now use this approach. FLC-III participants included: 3 
tenured faculty; 5 full time lecturers; and 2 part time adjuncts. The common calculus 
offering has now been delivered every semester since spring of 2014. 
As of 2016 we now have a coordinated calculus offering that employs common 
homework questions, has common exams, uses similar pedagogy and has a common 
final exam. We presented the method by which we facilitated the reform of this course 
at ASEE in 2015;9 this approach was sufficiently compelling that the paper received the 
mathematics division “Best Paper Award.” Table 1, below, summarizes the key 
strategies taken to accomplish the development of our coherent calculus course. We 
learned that reform starts from within – it is not a result of a course coordinator being 
appointed, or a common syllabus of final. A coordinate course is based on common 
homework problem. Having common homework problems leads to natural 
commonalities on quizzes. A dialogue on how to weight course elements works better 
than imposing a common syllabus. Over time, we found course instructors naturally 
wanting common exams and finals; these were not imposed. We measured pass rates, 
percentages of students earning certain grades; some of these results are presented 
below, with full details presented elsewhere.9 

Table 1: How to create a coordinated course with a common pedagogical approach 
Adoption Strategy – NO – Do not do this! Adoption Strategy – YES – Do this: 

Appoint a course coordinator. Start with common homework. Build 
consensus agreement on every exercise. 

Combine 12 small sections into 2 huge 
sections. Do the same thing with quizzes. 

Impose a common syllabus. Agree on basic weighting of all Hw, Qz, Ex, 
Final and letter-grade cutoffs. 

Impose a common final. Build consensus on exam content – 
eventually reach common exams. 

Impose common midterm exams and final Eventually adopt a common final 

Impose a pedagogical model. 
Along the way, allow the course content to 
shape pedagogy with the strategic goal, for 
example, of active learning. 

 
Some of our results from the coherent calculus course:9 

• The pass rate across the six instructors who taught in fall, 2014 increased from a 
weighted average of 60.5% to 73.9% 

• The percentage of students earning A and B grades increased markedly, from 
34.4% to 48.6%, an increase of 14.2%.  

• Student course survey results commented heavily on the pedagogical approach. 
For many students, the opportunity to work in groups in a math class was quite 
different from what they had experienced in the past. 
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• Instructors reported spending less time lecturing, as they surrendered time in 
class for students to work instead of watching them solve problems. 

• All but one instructor in this curricular reform project reported this impacting their 
pedagogical approach in other courses. 

• Instructors reported improved attendance and many other benefits.  

C. Curricular, Co-curricular and Extra-curricular Activities: In addition to the FLCs for 
instructional faculty, a number of different activities were conducted across the grant 
period. The first of these, accomplished in the first summer of the grant period, was to 
deliver a coordinated STEM summer orientation session.1 The very act of proposing 
and coordinating “STEM” orientation was our first step taken on campus to establish a 
“STEM Identity.”10 Other projects focused on undergraduate research experiences, on-
line mathematics learning/review and the Introduction to Engineering course.1,11-13 

In addition, we developed an outdoor STEM Summer Adventure experience for entering 
freshmen; we took them rafting on the Payette river in Idaho for a multiple day, 
extended field program.14 This is an institutionalized activity which grew from a handful 
of participants in 2010 to over 30 in 2015.  

Idaho STEP Program – Original Outcome Statements:  
By the end of the grant funding period, the Idaho STEP program will: 

(1) Have increased the first year retention level of first-time freshmen from 57% by 10 to 
15% for STEM majors, with a target level of 70%. This represents an annual gain of 
approximately 35 retained first year STEM students. 

(2) Have increased STEM undergraduate degrees by 22% (reference data: there were 163 
STEM graduates in 2007-8). 

(3) Have increased the first year retention rate of at-risk freshmen engineering students by 
10%. 

(4) Continue to post gains in women engineering enrollment from 9.8% in 2005 to 12.8% in 
2008, attaining 15% or more by program’s end.  

(5) Have institutionalized freshman STEM Learning Communities and Orientation programs. 

Idaho STEP Program – Actual Outcome Results: 

(1) Significant progress: We increased first-year retention of first-time freshmen by 7%.  
(2) Accomplished: We increased STEM undergraduate degrees from 234 graduates in 

2009-10 to 454 in 2014-15, an increase of 93%.  
(3) [note, because of institutional data restrictions, we had to reframe the goal] We 

increased the percentage of underrepresented minority students in engineering and 
computer science from 10.6% in fall 2009, to 13.5% in fall 2014. 

(4) Accomplished: We increased the percentage of women in engineering and computer 
science from 12.8% in fall 2008, attaining 15.6% by program’s end. 

(5) Accomplished: We institutionalized the freshman STEM Learning Communities and 
Orientation programs. 
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Broader Impacts 

We report that the strategy of focusing on student retention in the first year, led by a 
diverse team with a two-pronged approach that included faculty development as well as 
student programming, has yielded positive results. This project aimed to increase 
overall STEM graduation numbers while also increasing the percentage female and 
underrepresented minority (URM) students enrolled in engineering and computer 
science. Across the grant period, STEM enrollment increased from 2,238 in fall of 2008 
to 3,778 in fall of 2014 while first-time, full-time retention of STEM students increased by 
7% (attaining 64%) and graduation numbers grew from 163 in 2007-8 to 402 in 2013-
2014, an increase of more than 200%. Along with these very strong outcomes, we 
additionally increased female enrollment which attained 14.9% (up from 12.8% in fall, 
2008) and increased Hispanic enrollment from 8.1% to 13% across the same time 
frame. This compares favorably with the %URM in the state (14.3%, of which 11.6% are 
Hispanic). We attribute this increase to improved retention, resulting from improved 
student learning experiences.  

One of the broader impacts of this grant involved drawing attention to the needs of 
undergraduate STEM students. We essentially created a “STEM Identity” on campus.10 
One of the long-lasting inter-institutional outcomes realized was an awareness of the 
fact that STEM students had lower retention levels in STEM than the general student 
population, despite being among the best students admitted. Our STEM students were 
capable; they needed improved first-year experiences to remain STEM majors. 

Finally, this award helped show the need for coordination of STEM initiatives and for the 
need for reliable data. In January of 2015, the Institute for STEM and Diversity Initiatives 
was formed; the Institute’s aim is to build a diverse community of students, faculty, and 
others involved and invested in STEM. The primary goal of the Institute is to promote a 
culture of active inclusive excellence in STEM at Boise State University. The Institute 
fosters diversity in STEM through (a) advocating for and nurturing underrepresented 
student and faculty success inside and beyond the classroom, (b) strengthening 
avenues of communication and collaboration among University and external partners, 
and (c) conducting and catalyzing STEM educational research. 

Intellectual Merit 

Across the five years of funding and a no-cost extension, between January 2010 and 
December 2015, ten papers were published. These included two journal publications5,15 

and eight proceedings of the American Society for Engineering Education.1,6,9-13,16 In 
addition, five posters, two workshops and one panel discussion were presented at the 
National Science Foundation annual STEP meetings.17 Finally, two webinars were 
presented through STEP Central (now STEM Central).18 In addition, numerous internal 
communications, press releases, seminars, learning communities and more were 
conducted in order to broadly disseminate our program results.  
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Longitudinal Success of Calculus I Reform 

 

Abstract 

This paper describes the second year of an ongoing project to transform calculus instruction at 
Boise State University. Over the past several years, Calculus I has undergone a complete 
overhaul that has involved a movement from a collection of independent, uncoordinated, 
personalized, lecture-based sections, into a single coherent multi-section course with an active-
learning pedagogical approach. The overhaul also significantly impacted the course content and 
learning objectives. The project is now in its fifth semester and has reached a steady state where 
the reformed practices are normative within the subset of instructors who might be called upon to 
teach Calculus I. Gains from the project include a rise in the pass rate in Calculus I, greater 
student engagement, greater instructor satisfaction, a general shift toward active learning 
pedagogies, and the emergence of a strong collaborative teaching community.  

Project leaders are seeking to expand these gains to other areas of the curriculum and to broaden 
the community of instructors who are fully accepting of the reforms. Common concerns 
expressed by faculty resistant to the overhaul include suspicion that pass rate gains might reflect 
grade inflation or weakened standards, and that altering the traditional content of Calculus I 
might leave students unprepared for Calculus II. External stakeholders also have a vested interest 
in ensuring students receive a solid preparation in Calculus I. In this paper we develop a response 
to ensure solid evidence of Calculus II readiness that we hope will be useful to change agents 
and campus leaders in many other settings.   

We address concerns about Calculus II readiness by conducting a natural experiment, tracking 
two cohorts of students through Calculus I and into Calculus II.  The “treatment” cohort consists 
of students who reach Calculus II after passing the reformed Calculus I.  The “control” cohort 
consists of students who reach Calculus II after passing non-reformed Calculus I at Boise State 
University. The experiment has no designed randomizing, but enrollment data shows that both 
cohorts spread out across all sections of Calculus II with apparent randomness. Our research 
question is: “Does the treatment cohort perform any worse than the control cohort in Calculus 
II?” Data on pass rates and grades in Calculus II will show that the answer is “No.”   
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Introduction: History of the Calculus I reform project.  

Boise State University has been experiencing growth in STEM enrollment every year since the 
formation of its college of engineering in 1997. In fall, 2015, STEM enrollment included nearly 
4,000 students. Accompanying this growth came a demand for increased capacity in Calculus I, 
which has grown in enrollment by 74% over the past decade (from 244 in fall, 2006 to an 
enrollment of 433 in fall, 2015). 

With the increased demand for calculus instruction came several undesirable consequences. 
These included a lack of coherence between instructors in terms of content. Related to this was a 
lack of agreement in terms of what exactly students were expected to be able to do by the end of 
the course. In fact, that topic – the learning outcomes of the course – had not been addressed; 
each instructor instead carried their own learning outcomes. In nearly all instances, these 
outcomes were not actually articulated into a statement such as, “By the end of this course 
(chapter, section, unit), students will be able to…,” but rather were internalized; each instructor 
had their own sense of what should be taught in calculus, which guided their teaching, 
assignments and examinations. 

There was agreement about what c text should be used, and a common syllabus was on file. Yet, 
as a result of both growth and lack of coordination between instructional faculty, a situation had 
developed by 2005-6 which students, the mathematics department, and others recognized as 
being problematic. At that time, from a student’s perspective, it appeared to matter more, “who 
you took,” than “what you learned” in terms of their chances of passing the course.1 This was 
supported by pass rate data; the average pass rate in 2005-6 was 51% and ranged from 30% to 
90% depending on who taught the course.2 The variation in pass rate was a confounding problem 
in post-requisite courses such as Calculus II; students had highly variable preparation, and the 
Calculus II course also had no framework of common learning outcomes. 

In part as a result of an externally funded Science Talent Expansion Program (STEP) grant from 
the National Science Foundation in which the Chair of Mathematics was a co-investigator with 
the Director for the Center for Teaching and Learning, but also motivated internally by the 
mathematics department, and by the Office of the Provost, an initiative was launched to tackle 
calculus. This effort has been described elsewhere1 and is briefly summarized below. 

Our efforts at reform were influenced by a successful first-year engineering program at Wright 
State University3 which focused on engineering applications of mathematics and also informed 
by faculty development research summarized by Bressoud, et. al.4 In our reform, we were able to 
use STEP grant funding for year-long STEM-focused faculty learning communities (FLCs). 5 We 
held three FLCs across the five-year grant, with the last two cohorts exclusively focused on 
calculus instruction. These FLCs were facilitated by one calculus instructor who had reframed 
his calculus content into an application-based focus oriented to help future engineers and 
scientists appreciate why they need to learn calculus. A brief overview on the course is given 
below; full details on the FLCs, and how our “coherent calculus” course was developed, 
supported and implemented are presented elsewhere.1 
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Coherent Calculus -- overview 

The “Coherent Calculus” course contains the following elements, outcomes and pedagogical 
approach:1  

- Whenever possible, students work with data sets and/or continuous models selected from 
actual physical, biological, financial or other applied models. 

- Whenever possible, Calculus concepts are introduced and motivated by application to 
these models and data sets.  

- Whenever possible, content is presented using notation, language and conventions of the 
disciplines from which the models are taken.  

- As much as possible, content will be relevant, recognizable, and applicable in subsequent 
STEM coursework. 

- All content will be accessible from an intuitive or practical viewpoint.  In particular, the 
level of abstraction will be significantly less than typically found in Calculus I.  

 
Thematically the revised Calculus I class is focused on three outcomes: 
 

- Develop geometric and physical intuition for derivatives and integrals. 
- Master the standard rules for symbolic computation of derivatives and some basic 

integrals.  
- Apply both intuitive understanding and rules mastery to solve problems.   

 
The course design has the following pedagogical features: 
 

- Many short homework assignments with immediate computer driven 
feedback/assessment, typically due on a two-day cycle. 

- Each assignment designed along learning cycle principles to target one or two specific 
learning goals. 

- The vast majority of class time devoted to students working in small groups on these 
homework assignments.    

- Additional active learning assignments that occur in-class with real-time formative 
assessment (these were added in 2015-16). 

- All in-class work facilitated by lead instructor and peer learning assistant   
- Additional and more involved weekly work with written feedback.   

 
 

Table 1 summarizes the successful adoption strategy. Long-lasting change for us was derived 
from an approach driven by the faculty, based on homework. That is, our reform was driven by 
what the calculus instructors agreed that students needed to be able to do, not from any sort of 
imposed model or framework. 
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Table 1: How to create a coordinated course with a common pedagogical approach 
Adoption Strategy – NO – 

Do not do this! 
Adoption Strategy – YES – Do this: 

Appoint a course coordinator. Start with common homework. Build consensus agreement on 
every exercise. 

Combine 12 small sections into 2 
huge sections. Do the same thing with quizzes. 

Impose a common syllabus. Agree on basic weighting of all Hw, Qz, Ex, Final and letter-
grade cutoffs. 

Impose a common final. Build consensus on exam content – eventually reach common 
exams. 

Impose common midterm exams 
and final Eventually adopt a common final 

Impose a pedagogical model. Along the way, allow the course content to shape pedagogy with 
the strategic goal, for example, of active learning. 

 

The Impact of Coherent Calculus 

Enrollment and Pass Rates: We now have two full years of pass rate data since the Calculus I 
project scaled up, see Figure 1. There was an initial jump from approximately 65% to 75% that 
has not been sustained, but the overall pattern is still good. Prior to scale up the historical pass 
rate was about 60% -- improving, but struggling to ever exceed 65%. Since the scale up pass rate 
has averaged 72% and only once dipped below 70%. Although participation in the project 
remains purely voluntary, all instructors continue to opt into the project except for those teaching 
honors or online sections.i 

 

Figure 1: Calculus I pass rate as a function of semester. Red line corresponds to pass rates after the 
Coherent Calculus model was implemented in spring, 2014. 

                                                           
i In summer 2014 it was not possible to join, since materials were not ready. One summer 2015 instructor declined to 
participate. Pass rate and enrollment data here do not include summers. Summer does not much alter the overall 
averages or trends, but it is much more volatile. 
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The total number of students served by the reformed Calculus, compared to more traditional 
Calculus, is shown in Figure 2. During the initial scale up term, spring 2014, there were roughly 
equal numbers of reform and other Calculus sections. Presently, the only non-reform sections are 
(1) honors, (2) online, or (3) face-to-face but taught in parallel with the online section. 

 

Figure 2: Calculus I enrollment by semester. 

Total students “captured” by the reform project, as a percent of enrollment is shown in Figure 3. 
It appears to be stabilizing in the low to mid 70’s, which currently reflects the portion of calculus 
that Boise State University has chosen to offer as honors, online, or face-to-face but parallel to 
online.  

 

Figure 3: Enrollment in reformed Calculus I expressed as a percentage of enrollment. 
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The focus of this paper 

Pedagogical reforms are subject to criticism for many reasons and from many quarters. As a 
leader or change agent, one must be prepared to address such concerns. This paper presents a 
rigorous, data driven technique for refuting such. Resistance takes the form of critiques such as 
“pass rate gains are probably grade inflation,” or “important content is missing or mishandled in 
the new Calculus I”. Any such claim is a testable hypothesis.  If the claim is that the inflated 
grades or missing content result in harm to Calculus II students, then this is a claim that the null 
hypothesis, “Students do equally well in Calculus II, regardless of the Calculus I reform” is 
rejected in favor of the alternative hypothesis, “Students coming from reform Calc I do worse in 
Calculus II.”   

This paper reports on a natural experiment that provides a rigorous statistical test of the above 
hypothesis.  We find that you cannot reject the null hypothesis, which means Calculus I reform 
causes no damage to students in Calculus II.  

Additional resistance or continued skepticism is entirely possible.  In particular, one cannot 
conduct this experiment without making many choices about how to select and interpret data.  In 
anticipation of such we will explore several alternative choices.  In this process we will 
sometimes see negative treatment effects, but never at any statistically significant level and never 
sufficient to reject the null hypothesis, even when the data are carefully chosen to make the 
treatment look as bad as possible.  We will also see some positive treatment effects, meaning 
there are subsets of the data in which the treatment group out performs the control group in 
Calculus II.   

Effects of Reformed Calculus I on Calculus II 

To analyze student performance in Calculus II, we created two cohorts, further sliced by term, 
defined as follows: 

Term X Treatment Cohort consists of all students who passed reformed Calculus I during term X 
at Boise State University, and then immediately enrolled in Boise State University Calculus II.  

Term X Control Cohort is all students who passed non-reformed Calculus I during term X at 
Boise State University, and then immediately enrolled in Boise State University Calculus II.  

We define “immediately” to mean without skipping a regular term, so spring-to-fall succession is 
immediate. This means that a spring cohort will contain students who took Calculus II in either 
the subsequent summer or fall. No student can be in more than one cohort. We capture only the 
first instance of a student passing Calculus I, and then only the immediate enrollment in Calculus 
II. We care only about passers of Calculus I because our dependent variables are performance 
metrics in Calculus II, which requires Calculus I as a prerequisite. We wish to compare the 
efficacy of reformed to non-reformed Calculus I, so we do not consider transfer Calculus I 
credits or other routes into Calculus II (CLEP, AP, etc.).   

Cohorts are defined by term so that we can conduct time series analysis.  However, the analysis 
in this paper will primarily deal with aggregated cohorts.  Unless specifically stated otherwise, 
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both the treatment and control cohorts will be aggregated from spring 2013 to summer 2015, 
inclusive. We refer to this as the baseline cohort.    

For each cohort, we measure two dependent variables:  Calculus II pass rate and average 
Calculus II grade.ii    

Calc II Pass Rate  =  (Number of A’s, B’s, C’s) / (Cohort size – Audits – Incompletes) 

Grades are converted to grade points on the usual 4-point scale. Boise State University uses +/- 
grades, so the conversion is A+ = 4.0, A = 4.0, A- = 3.7, B+ = 3.3, etc. We count W’s and CW’s 
as 0.0, along with F’s. This is consistent with DWF used more generally as a student success 
metric, in that it considers an F and a W to be equally unsuccessful.   

Calc II Grade = (Total grade points) / (Cohort size – Audits – Incompletes)  

It is possible that there one cohortcould be better prepared for college level work than another 
cohort. So we tracked four control variables for each cohort:   

 

GenACT:  About 70% of our students have either an ACT or an SAT Math score. SAT 
Math scores are converted to ACT using published concordances.7 If this results in two 
scores (some students have both ACT and SAT) we take the higher.  This is averaged 
across members of the cohort that have at least one score.   
 
CumGPA:  This is the cumulative grade point average for each student at the conclusion 
of the cohort term, averaged across the cohort.  Data limitations at Boise State University 
force us to use a value of Cum GPA that may have become slightly inflated by grade 
replacement in the semesters since the cohort term. The effect is small, but nonetheless 
unfortunate.  In a future paper we hope to replace this variable with a more rigorously 
controlled GPA.6 We continue to use this variable because it is the only independent 
variable for which we have data for all students, and because it is our only independent 
variable that directly measures ability to do college level work.  

HSGPA:  High school GPA.  Along with SAT/ACT scores this is recognized as one of 
the strongest predictors of college success.  We have data for approximately 85% of our 
students.   
 
AdIndex:  Boise State University calculates an Admission Index based on HS GPA and 
composite ACT/SAT.  Also recognized as a strong predictor of college success.  Since it 
uses composite test scores rather than just Math, it is not redundant. We have data for 
approximately 55% of our students.     

  

                                                           
ii “Dependent” in this context means only dependent on control vs treatment.  Although there are 
also “independent” variables, we will not conduct regression analysis in this paper. 
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The Data 

Here is the complete time series for all variables and both cohorts: 

 

Table 2: Time series for all variables and both cohorts, spring 2013 – summer 2015. 

The scale up semester, spring 2014, is highlighted in Table 2. The last column shows the 
aggregate measures. Statistical analysis follows, but we have found that this or similar charts are 
useful as descriptive data.  Some observations: 

• In aggregate, the treatment cohort scores slightly worse on both measures of Calc II 
performance. (Neither group is doing all that well in Calculus II, but that is a separate 
topic.)  

• The four independent variables suggest, in aggregate, that the difference in academic 
preparation between the treatment and control cohorts is negligible. It is difficult to judge 
whether a 0.1 gap in average ACT Math score matters compared to a .03 gap in GPA, or 
a 2% loss in pass rate. This is what statistical tools are for.  

Although the aggregate data looks at first glance worse for the treatment group, the time series 
from the scale up term onward actually shows treatment groups did slightly better in Calculus II.  
Not by much, but consistently and on both measures.     

Analysis 

We apply standard statistical tests to compare Calc II Pass Rate and Calc II Grade for each 
cohort.  

We also conducted statistical tests to compare the average values of the independent variables for 
each cohort. For all independent variables, the hypothesis we are testing is whether the cohorts 
are actually any different. The results are summarized in Table 3. 
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Control 2.35 2.16 1.88 1.71 1.75 2.20 1.89 1.56 2.01
Treatment 1.95 1.04 1.76 2.27 1.93 1.67 1.94
Control 3.16 3.23 3.20 3.04 3.03 3.19 3.17 3.20 3.16
Treatment 3.41 3.19 3.06 3.13 3.13 3.16 3.13
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Table 3:  Effects and p-values for baseline cohort 
Values Control Treatment Effect Size p-Value 
Cohort Size 598 445     
Calc II Pass Rate 66.4% 64.3% -2.1% 0.239 
Calc II Grade 2.01 1.94 -0.07 0.215 
CumGPA 3.16 3.13 -0.03 0.836 
GenACT 24.60 24.70 0.11 0.359 
AdIndex 60.88 60.91 0.02 0.493 
HSGPA 3.38 3.36 -0.02 0.671 
 

The effect size column recaps what was observed in Table 2. We see a small negative effect of 
treatment. However, the p-values are large, meaning the effect is of no significance. We cannot 
reject the null hypothesis, so we conclude that Calc II pass rates and grades for the two cohorts 
are not meaningfully different. The p-values for independent variables show that the two cohorts 
are not meaningfully different on a priori academic measures.  

Discussion 

The overarching purpose of this analysis is to provide change agents, campus leaders, and 
curriculum reformers the ability to present a persuasive and rigorous argument to potential 
resisters. Resisters may legitimately claim that these statistical results are influenced by choices 
made by the study designers, such as which terms to aggregate, whether to consider only 
immediate follow-on to Calculus II, etc. It is true that results are sensitive to such choices. Table 
4 presents the results from aggregating only the three regular semester cohorts since scale up 
began.   

Table 4: Baseline cohort restricted to regular terms from scale up to present 
Values Control Treatment Effect Size p-Value 
Cohort Size 154 376     
Calc II Pass Rate 64.9% 68.1% 3.2% 0.756 
Calc II Grade 1.90 2.03 0.13 0.839 
CumGPA 3.12 3.11 -0.01 0.575 
GenACT 23.69 24.77 1.08 0.010 
AdIndex 62.33 61.24 -1.09 0.695 
HSGPA 3.36 3.37 0.00 0.492 
 

This choice converted negative treatment effects into positive effects. However, it also created a 
larger and much more significant gap between the cohorts’ ACT Math scores. This p-value is 
small enough to suggest that for this subpopulation more analysis, with some device to control 
for effects of this variable might be appropriate. However, for the purpose at hand, it is enough to 
note that the effects of treatment are non-negative. It is not possible for any positive treatment 
effect to lead to rejection of null hypothesis. What the finer analysis is really saying is that it 
would be a mistake to attribute the positive effects to the treatment itself.  
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Since the goal is to provide good evidence that Calculus I changes do no harm in Calculus II, , 
the best approach is to rerun the analysis with as many different reasonable modifications as 
possible. If the null hypothesis is true, then it will be unlikely that any modification results in 
data that calls for rejecting the null hypothesis. Moreover, if you have looked at the data in many 
ways, as we have, you can present as the baseline case a viewpoint that is least favorable to your 
project. Then repeated attempts to probe your data will mostly show better results for your 
project.   

We have done this for the data set here. Some modifications that we have studied: 

• Start at the scale up term, as in Table 4, but remove summers. This makes the treatment 
cohort look better than it does in the baseline case of Table 3. 

• Put the summers back. Now the treatment cohort looks a lot better. In fact it is almost 
good enough (p =0.06) to reject the null hypothesis in the other direction, suggesting that 
the non-reformed Calc I is hurting students in Calc II.  

• Restrict to subsets of students for whom we have complete data on independent variables.  
For example, Table 4 could be modified to look only at students who actually have ACT 
Math scores. (Oddly, the positive Calc II effects vanish – so they were not after all caused 
by the ACT scores. This sort of odd artifact is not uncommon when studying data sets in 
which the measured effects are statistically insignificant.)  

• The control group contains all of the honors calculus sections. We could remove them.  
Unsurprisingly, this makes the treatment cohort look better.  

• We included only students who took Calc II immediately after Calc I. There are good 
technical reasons for this choice, but someone could argue it was done to massage the 
data. To test this we added delayers to the data. This, too made the  treatment cohort look 
better than before.   

• Combinations of the above. All of them result in treatment results that are better than 
Table 3. Many of them result in positive treatments effects.   

• At least one perfectly reasonable combination -- begin at the scale up term, keep all 
subsequent terms, and remove honors sections -- results in very attractive treatment 
effects: Table 5. 

Table 5: Baseline cohort, from scale up to present, without honors 
Values Control Treatment Effect Size p-Value 
Cohort Size 206 401     
Calc II Pass Rate 59.7% 66.8% 7.1% 0.957 
Calc II Grade 1.72 2.00 0.29 0.994 
CumGPA 3.07 3.11 0.04 0.202 
GenACT 23.25 24.79 1.53 0.000 
AdIndex 56.72 61.14 4.42 0.015 
HSGPA 3.28 3.37 0.09 0.026 

 

 

Here we see large positive effects of treatment.  However, it is statistically irrelevant to the 
specific experiment and research question addressed in this paper. This is because we set out to 
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test a one-sided hypothesis – that the treatment cohort does no worse. If the observed result is 
that the treatment cohort does better then you cannot reject the null hypothesis. What this means 
is that, if we had chosen to design an experiment to test a different hypothesis – say that 
treatment improves Calc II outcomes, there is a good chance that we would have a positive 
result. We will focus on this in future work. 

The larger point is that the decisions defining the baseline cohort are probably sound decisions, 
and are certainly defensible against any claim of massaging data in favor of positive treatment 
outcomes.   

Here is a summary of the reasons for originally settling on our choice of baseline cohort.  

• The time series from spring 2013 to summer 2015 is well balanced temporally. It 
includes 2 regular semesters prior to scale-up, during which control cohorts were larger 
than treatment cohorts. It includes 2 regular semesters after scale-up, when treatment 
cohorts were larger than controls. And it includes the scale-up semester itself, in which 
the cohorts were most nearly equal in size. Also, this time series achieves a nice middle 
ground between the desire to have large overall N, and to have N split into roughly equal 
sized treatment and control cohorts.  (Older start dates clearly increase N, but older terms 
are also overwhelmingly control cohort. More recent start dates, like spring 2014 both 
lower N and skew the cohort size towards treatment.)  
 

• We chose a cohort definition that restricts us to students who take Calculus II 
immediately after passing Calculus I. This lowers N by about 10%. (Approximately 90% 
of students who ever continue on to Calculus II do so without delay). Including delayers 
would skew towards older cohorts, since only the older cohorts have had enough time to 
delay and then eventually take Calculus II. This in turn means that control cohorts will 
have more delayers than treatment cohorts. Delayers may have different personal 
characteristics that influence Calculus II performance, which would be disproportionately 
present in the control cohorts. 
 

• We stop with summer 2015 because it is simply the most recent term in which we could 
have any longitudinal data for students continuing to Calculus II (fall 2015).  
 

• We left honors students in the control cohort because, if ever in doubt, do not restrict data 
in ways that obviously promote your result.   
 

Effect of treatment on female and underrepresented students 
 
This section examines how women and under-represented minority students perform in Calculus 
II as a result of the reform of Calculus I. Table 6 presents results for the baseline cohort   
restricted to female students. 
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Table 6: Baseline cohort, women only.    
Values Control Treatment Effect Size p-Value 
Cohort Size 108 87     
Calc II Pass Rate 67.6% 64.4% -3.2% 0.318 
Calc II Grade 2.06 2.08 0.01 0.528 
CumGPA 3.29 3.26 -0.02 0.621 
GenACT 24.27 24.83 0.56 0.187 
AdIndex 66.22 66.60 0.38 0.447 
HSGPA 3.53 3.60 0.07 0.147 

 

We see the usual results: small effects in Calc II, none significant, and we cannot reject the null 
hypothesis. The treatment group here has an edge over controls in the independent variables, so 
if there were anything of interest in the Calc II effects it would be best to control for the effects 
of ACT and HSGPA.   

This is the first slicing of the data that even hints at possibly weaker performance in Calc II. 
Calculus II course grades are up a tiny bit; pass rate is down a larger amount; but both p-values 
indicate this not significant. Control variables are split. Mostly this data says female treatment 
and control groups perform the same in Calculus II.  

Table 7 presents the results for underrepresented minority students (URM). URM is defined here 
using our Data Warehouse IPEDS Ethnicity field. We would prefer to have more nuanced 
information, but working with this we exclude all students who are classified as White, Asian, 
Non-resident Alien, Two or More Races, or Unknown. This drops our N from over 1000 to 108.  

Table 7: Baseline cohort, URM only.    
Values Control Treatment Effect Size p-Value 
Cohort Size 52 56     
Calc II Pass Rate 53.8% 66.1% 12.2% 0.904 
Calc II Grade 1.79 1.88 0.09 0.624 
CumGPA 3.13 3.08 -0.05 0.673 
GenACT 23.37 22.88 -0.49 0.701 
AdIndex 56.19 57.74 1.54 0.361 
HSGPA 3.36 3.36 0.00 0.485 

Unsurprisingly, with such low N, the difference between pass rate and GPA between the 
treatment and control cohorts is not statistically significant. Nor are the differences in academic 
ability of the two groups. However, the pass rate effect is large, indicating that further study may 
show that treatment causes pass rate to go up for some groups. That the reformed Calculus I 
resulted in increased pass rate for URM students is not unexpected; the literature clearly shows 
that active learning strategies, such as is deployed in the reformed Calculus I (group work, etc.), 
have a positive influence for students who are part of an under-represented minority group. For 
example, Klingbeil’s longitudinal study3 showed that graduation rates were tripled for URM 
students who took their engineering-based introductory mathematics course (a hands-on, 
application focused course) compared with those who did not, and that URM students had higher 
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graduation rates than the control group. 
 

Statistical Significance of Calculus I Effects 

Our treatment is an intervention in Calculus I. It is not surprising that it shows no statistically 
significant effect in Calculus II.  It was designed to achieve effects in Calculus I.  It does. This is 
what statistically significant data look like: 

Table 8: Calculus I Effects.    
Values Control Treatment Effect Size p-Value 
Cohort Size 1540 994     
Calc I Pass Rate 67.3% 72.8% 5.5% 0.001 
Calc I Grade 2.03 2.21 0.18 0.001 
CumGPA 2.95 2.93 -0.02 0.774 
AdIndex 59.78 59.73 -0.05 0.524 
HSGPA 3.33 3.33 0.00 0.559 

The treatment and control cohorts are indistinguishable on independent measures of academic 
ability.  But the treatment effects of increased pass rate and grade are significant at the strongest 
levels of p-value used in any experimental studies.    

Summary 

Calculus I reform has produced sizable, sustainable, and statistically significant gains in Calculus 
I pass rates and grades. The course pair report is a rigorous, data driven response prepared to 
consider claims that student success in reformed Calculus I is the result of grade inflation or 
weakened standards. It also addresses claims that content in Calculus I cannot be altered for fear 
of degrading Calculus II performance. Our data persistently shows that reform Calculus I 
students do no worse in Calculus II than their peers who came through traditional Calculus I. 
This presentation is strongly resistant to any claims of data massaging, since nearly every 
adjustment makes the treatment look better than the baseline case we began with. No 
interpretation of the data comes anywhere close to rejection of the null hypothesis in favor of the 
alternative that Calc I reform harms future performance in Calc II.  Both groups perform equally 
which should soundly refute any accusation that standards or content in the reformed Calculus I 
are any sort of danger.  

These results are unsurprising when taken in light of the vast body of work done on active 
learning and its impact on STEM learning. Our reformed Calculus I contains active learning 
strategies including group work. The literature overwhelmingly supports the importance of group 
work/collaboration in terms of student persistence and success in major, due to their increased 
engagement with one another.8,9 A recent metaanalysis of undergraduate STEM literature shows 
that active learning leads to increases in examination performance that would raise average 
grades by half a letter.10 Our results show an increase in pass rates by approximately that level.  
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Future Work  

As a result of numerous positive outcomes associated with Calculus I reform, the reform is now 
spreading into Calculus II, with a roll-out point of spring, 2016. Faculty perceptions seem to be 
generally positive from the Calculus I reform1 and we will continue to monitor this. We will 
continue to rigorously analyze student performance by looking at course grade performance and 
post-requisite course performance. We plan to also begin to monitor student performance in 
certain engineering courses for which Calculus I or II are prerequisites (Statics and Dynamics).  
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Lessons Learned from S-STEM Transfer Student  
Scholarship Program 

 
Abstract 
 
This paper describes how the College of Engineering at Boise State University utilized a 
National Science Foundation S-STEM award from 2011 to 2016 to support transfer students in 
their path toward graduation. The need for this support was a result of both Boise State 
University College of Engineering’s transition from a 2-year pre-engineering program to the 
establishment of Bachelors of Science in Engineering Degree programs in 1997 as well as the 
establishment of the College of Western Idaho as a regional community college in 2007. Both of 
these factors led to an increase in the numbers of incoming engineering students transferring 
from other institutions of higher education to complete their degree. These students were 
generally ineligible for most Boise State University scholarship programs which are mainly 
aimed toward students entering college directly from high school. 
 
In this paper we describe how our program connected transfer students with university staff, 
faculty and resources. To date, this program has a 100% retention rate, with the exception of one 
student on an official leave of absence, and a projected 100% graduation rate with 91% of the 
students already graduated. In addition, approximately 22% of scholarship graduates are 
pursuing graduate degrees.   
 
 
Introduction 
 
Boise State University’s College of Engineering was founded nearly two decades ago in 
response to regional demand for engineering education from industry leaders. The College of 
Engineering student body now comprises approximately 3,000 students, reflecting approximately 
15% of the university’s enrollment. In 2014-15, 52% of the university’s students were eligible 
for Pell Grants, and 19% of the engineering graduates were first-generation college students. 
Despite the overwhelming need for financial support, the young alumni base of the college has 
not yet yielded substantial endowments so as to provide a significant scholarship base. Also, our 
students are highly debt-averse, and often delay graduation because of financial needs. Funding 
from the National Science Foundation has therefore been critical. Across eleven years between 
fall, 2004 and fall, 2015, a total of 326 unique students have received scholarships from CSEMS 
and S-STEM programs at Boise State. This paper reports on one of these programs targeted 
toward transfer students. 
 
For the first ten years of its history, Boise State University offered only Associate’s degrees 
through the College of Applied Technology. In 2007, the College of Applied Technology was 
separated to become a regional community college, located approximately 20 miles to the west. 
Because of this opportunity to begin their studies at a community college, the number of students 
transferring into Boise State’s College of Engineering has substantially increased. Transfer 
students have unique financial needs; as many exceed their financial aid allocation before they 
graduate due for a number of reasons including entry mathematics level, which may be 



substantially below calculus. Also, most of our university level scholarships are focused on 
traditional students.   
 
Along with financial need differences, transfer students’ life demands and needs differ from 
traditional students. These students are balancing college classwork with part time employment 
and raising families, and struggle to incorporate additional activities and time commitments. As a 
result, the focus of the transfer cohort activities reported in this paper has been on a combination 
of support services geared to student success with social activities for helping students make 
connections among their cohorts, other students and faculty.  
 
Scholarships Awarded 
 
An analysis of the transfer student body revealed that approximately 55% of our graduating 
students in 2009-10 graduated with transfer credits. Of transfer students enrolled at that time, 
32% came with fewer than 15 credits, 21% with 15 to 29 credits, 27% with 30 to 60 credits and 
20% with 60 or more credits earned. Based on the wide variation in credits earned, we designed 
an array of programming events designed to meet the needs of transfer students, described later 
on in this report in the section on programming. 
 
Over a five-year period, awards were made to 54 qualified full time students pursuing degrees in 
engineering, computer science or mathematics. In addition to demonstrating financial need, 
qualifications included that the students be United States citizens or permanent residents and 
show academic talent with a minimum GPA of 3.0. Based on Boise State University’s 
determination of unmet financial need from FAFSA records, NSF scholarships for students 
ranged from $1,500 to $3,000 per semester. These amounts varied from the originally proposed 
funding levels of $1,000 to $5,000 per semester due to the large number of qualified applicants, 
increased financial need and time on scholarship. Students were supported for between one and 
four years, with the average length of award being four semesters. Eligibility requirements also 
required students have between 6 and 60 transfer credits from a community college or university. 
 
Programming and Programming Results 
 
Mathematics Programming 
Prior work has shown the importance of early success in mathematics in terms of earning a good 
course grade. Moreover, an analysis of retention predictors showed that success in a student’s 
first math course taken is a very strong predictor of retention in STEM.1, 2 Analysis of our 
transfer students in fall 2011 showed that approximately 60% of transfer students in engineering, 
computer science or mathematics entered at the Calculus level or lower. Based on this data and 
prior work, the programming for this grant was designed to include an initial focus on math 
review and support.  
 
To facilitate individual, independent review of mathematics at pre-calculus levels and below, we 
promoted the ALEKS online mathematics review program during transfer orientation. The 
program was made available to students at no charge through the Idaho NSF STEP program 
(2010-2015).3,4 During this same time, significant pedagogical improvements were underway in 
Calculus I funded through two other grants (NSF STEP and WIDER) that also helped with 



Calculus I outcomes. Profound changes were made across all sections of Calculus 1 in terms of 
pedagogy, homework, timing of course content, grade computation and exam content with the 
objective to raise first semester, full-time retention of students in STEM majors. Year-long 
faculty learning communities (FLCs) were developed which focused on active learning 
pedagogy, common homework, and common due dates and times. The FLC structure facilitated 
buy-in, communication and feedback between instructors who came to agreement on learning 
goals and content for each individual lesson. All members of the FLC chose to adopt a similar 
pedagogical approach which included devoting class time to solving problems, working in small 
groups; these were facilitated by the lead instructor with a learning assistant. Pass and 
withdrawal rates pre- and post- implementation revealed an increase in pass rate of 13.4% and a 
drop in withdrawal rate of 3.9%. Results from anonymous faculty surveys showed that faculty 
changed their teaching practices in calculus and observed positive effects of all their classes.5 
 
One Stop Shop 
In order to provide convenient and continuous support for transfer students and for other students 
receiving funding from the NSF S-STEM programs, we developed a “One Stop Shop.” The 
genesis for this concept was based on what had been learned in our first S-STEM grant, where a 
single point of contact was found to be critical. This concept was continued and expanded in this 
grant to assist students. A Scholarship Coordinator was designated who provided students with a 
single point of contact to assist with academic, career and financial needs. After one year, the 
location of the coordinator was moved to the College of Engineering Advising Office (CEAO). 
This location proved to be instrumental as it was very convenient for upper division students to 
make contact with the Scholarship Coordinator (a licensed professional engineer) and to drop-in 
informally from time to time. Also, the CEAO provided a convenient location for offering some 
of the social events during the grant. Academic advising routinely takes place in the CEAO, and 
other professional staff members are also present, providing a sense of community and belonging 
to all students, not just the scholarship recipients. 
 
Flexible Programming 
Over the grant period the Coordinator organized semi-regular monthly events that were held both 
on and off campus during a variety of flexible times to allow for variety in class schedules, 
commuting time, family and work commitments. These activities were in addition to dedicated 
advising and career support and consisted of a combination of social events such as rock 
climbing and yoga to career development workshops covering resumes, internships, research and 
career fair preparedness. These events were frequently conducted in collaboration with other 
STEM groups including faculty and staff. Given the proximity and unique access to a local 
hands-on science center, events were opened to the transfer student cohorts and their families 
providing special access to local and national exhibits. A website along with emails to the 
transfer cohort were used to communicate information and details on event programming; in 
addition a Facebook group was created to facilitate communication in the final years of the grant. 
Surveys of students following years 1 and 3 of the grant confirmed students’ desire for a 
combination of informal social and network activities as well as more career focused 
opportunities. Results from a post grant survey sent to all scholarship recipients rating the benefit 
of various programming to the students was compiled for eleven activities, many of which were 
repeated over the grant period. Students were asked to rate only the programs for which they 
participated in on a scale ranging from no benefit, to some or very beneficial with a neutral 



option included. Overall for those that participated in the various events, 54% reported an event 
as being very beneficial with 75% of the respondents reporting events providing some benefit.  
The highest rated events are listed below in Table 1. 
 
Table 1 – Rating of top 5 programming events by grant participants 

Programming % reporting very beneficial % reporting some benefit 
finals and holiday socials 63% 72% 
internship & resume 
workshops 61% 92% 

academic & career advising 60% 73% 
networking luncheons 
w/faculty & staff 60% 80% 

yoga and rock climbing 55% 67% 
 
Scholarship Results 
The initial goals were to provide 40 students with funding. Due to the significant need for 
scholarships for transfer students, funding was provided to 54 students for as few as one year and 
as many as 4 years. On average students were on scholarship for 2 years. This grant, like 
previous College of Engineering S-STEM programs, was successful in recruiting student 
participation from the two largest underrepresented populations in the region - persons of 
Hispanic descent and women. These student populations were targeted by both email and phone 
calls to ensure they knew of the program and encourage their application. In addition, outreach to 
staff within other university programs that support these minority groups was also made 
including to the College Assistance Migrant Program (CAMP), the Center for Multicultural 
Education Opportunities TRIO Student Success Program as well as the Louis Stokes Alliance for 
Minority Participation (LSAMP). As a result, the pool of students who received support was 
significantly more diverse relative to the college and university, with 22% (12/54) of the 
scholarship recipients being female and 15% (8/54)  Hispanic. These values may be compared 
with 12.7% female and 9.5% Hispanic, for engineering and computer science majors, and with 
53% female and 7% Hispanic at this university (2011-2012 basis). 
 
One of the most significant results of this program has been its 100% retention rate with the 
exception of one student who is on an extended leave. This is a very strong result, given that 
internal data shows that for a variety of financial, personal and other reasons, between 2008 and 
2012, 17% of all STEM juniors stopped out of the university for a semester or more. Hence, 
receiving the scholarship likely enabled students to continue toward their degree without 
stopping out.  A comment received during the post-survey, “I was able to focus my efforts and 
make school and my graduation my priority,” highlights the importance of the financial support 
of the program. A survey conducted during year one of the program reinforced the post survey 
results – that the scholarship lessened financial pressure including the benefit of reduction in 
work hours followed by a reduction in student loans.  
 
In addition to retention, this program has delivered very strong graduation results, with an overall 
expected STEM degree attainment level of 100% with 91% (49/54) of the students having 
graduated as of fall 2015.  This may be compared with university-wide six and eight-year 
graduation rates of 28% and 34% (respectively, 2004 basis), and a six-year graduation rate for 



engineering and computer science majors (2006 basis) of 29%.  S-STEM transfer programs at 
Arizona State University have had similar success with graduation rates ranging 90-95% for 
students supported by the development of a transfer students support program.7 
 
Further evaluation of the average cumulative grade point average (gpa) of transfer S-STEM 
graduates shows an increase over non supported students.  The average cumulative for graduates 
of the program is 3.49 compared to an average cumulative gpa of 3.19 for the control group 
consisting of transfer students with the College of Engineering at Boise State who also graduated 
between fall 2011 and spring 2015. Additional analysis of students’ final cumulative gpa upon 
graduation which includes transfer credits as well as those taken at Boise State compared to only 
their Boise State gpa reveal an average decrease of only 0.03 points.  This minor drop occurred 
during the students first semester at Boise State but is less than the typical drop often referred to 
as “transfer gpa shock” experienced by upper division transfer students of as much as half a 
grade point.7 Studies done at Boise State of transfer students enrolled at Boise State between fall 
of 2000 and summer of 2009 showed a drop of 0.15 for a similar transfer cohort.8      
 
The average number of degree-enrolled years for graduation of the S-STEM transfer cohort was 
4.7 years compared to 4.9 years for the 293 transfer students that graduated with an engineering 
or computer science degree between fall 2011 and spring 2015. The post-survey confirmed the 
impact the scholarship had on students’ time to graduation as shown in Table 2. Students were 
asked to rank 5 statements related to the benefit of the scholarship to them. While no single 
statement was overwhelming selected by respondents, a review of the top three statements by 
students demonstrates that a majority reported that the scholarship both prevented them from 
attending part time and reduced their time to graduation. Students reported that the financial 
support was critical to their retention and graduation. A comment included in the survey by one 
student indicated: “If not for the scholarship I would have dropped out." A majority reported that 
the scholarship accelerated their time to graduation, freeing up time for them to study and take 
additional classes. 
 
Table 2 – Post survey ranking of statements by students 

 
My scholarship… 

% ranking 
statement  

#1 

% ranking 
statement 
#1 or #2 

% ranking 
statement 
 #1, #2, #3 

prevented me from going part time. 27% 61% 78% 
reduced my time to graduation. 22% 44% 72% 
allowed me to increase my credit load. 16% 39% 50% 
prevented me from taking a semester off. 16% 27% 50% 
allowed me to take summer classes. 11% 22% 53% 

 
 
Graduate school: Of the 49 students that have graduated, 11 students (22%) are pursuing 
graduate school. This is more than double the college of engineering average rate of 
undergraduates that go on to graduate school of approximately 10% based on exit surveys. While 
other universities have attained a higher percentage of students moving on to graduate school 
(50-60%) this scholarship rate is more on par with the national average and a significant increase 
over non-scholarship students at Boise State.7, 9  



 
Challenges and Lessons Learned 
A variety of programming was offered throughout the five years of the grant. One of the issues 
encountered was that without a formal time-slot associated with a weekly meeting such as other 
programs offer, it was a challenge to offer events that transfer students could readily attend.10, 11 
While our program required students to only attend events 3-4 times a semester or 6-8 times a 
year, many of the transfer students had family and work obligations that prevented them from 
participating. One student reported in the post-survey, “My biggest obstacle in the program was 
finding time for the activities. I am a single parent and between jobs, school, family, internships 
and clubs, my time was very limited and I was not able to be involved in all the activities.”  
 
To overcome the scheduling challenges, we offered a wide variety of programming opportunities 
and times. We accomplished this by working closely with other entities on campus such as 
LSAMP, and other student success oriented activities including those offered by the career 
center. These efforts to create a variety of events and times to work with students schedules was 
found by students to sometimes to be overwhelming. In reviewing the literature, other grant 
programs have operated in a more structured manner, requiring students to register for a specific 
class (e.g. Academic Success and Professional Development) related to their scholarship. This 
model has proven a successful strategy not only for scholarship recipients but for others who 
enroll in the course as well.9 This model is something to consider for future scholarship projects 
as it simplifies scheduling and affords a structured timeslot. 
 
The implementation of a Scholarship Coordinator as part of a “one-stop shop” for the grant was 
instrumental for connecting to students to resources. We were able to have a dedicated staff 
member as a result of the college of engineering supporting the remainder of the staff member’s 
position on soft money. The coordinator’s location in the CEAO allowed her to be readily 
available to S-STEM students while also supporting the advising office. As an advisor, the 
Scholarship Coordinator was able to provide knowledge about university policies and procedures  
including those related to financial aid. Other programs have the importance of enhanced 
advising in successful retention, including the use of both peer and faculty mentoring as part of 
their structure.10 For this scholarship program, informal mentoring by students and faculty 
proved to be successful but could be expanded upon in the future. The Scholarship Coordinator 
as a licensed professional engineer was able to represent a number of disciplines and provided 
connections to local professional and technical societies for opportunities outside of the 
university. 
 
Summary and Suggestions for Future Scholarship Programs 
The NSF S-STEM transfer scholarship program at Boise State University has been very 
successful. In particular students on the scholarship have been retained with the exception of one 
students on an extended leave, and we are projected to have a 100% graduation rate with 91% of 
the students already having graduated before the grant’s end. Students who received this 
scholarship are pursuing graduate degrees at approximately double that of non S-STEM transfer 
students. The post-survey showed that students report the scholarship as being critical to their 
timely graduation.  
 



While students enjoyed the informal, active social events, and requested flexible programming, 
we recommend a more structured approach to event programming in order to facilitate a formal 
cohort development in a streamlined structure. Such a structure might include a class or set 
meeting time; this has been shown by Anderson-Rowland, et al. for example, to be effective.11   
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Assessing the STEM landscape: the current
instructional climate survey and the
evidence-based instructional practices
adoption scale
R. Eric Landrum*, Karen Viskupic, Susan E. Shadle and Doug Bullock

Abstract

Background: The efficacy of active learning within STEM education is clear, and many institutions are working to
help faculty adopt evidence-based instructional practices (EBIPs) which can promote active learning. In order to know
the current status of our campus regarding these goals, measures of current instructional climate and the adoption of
evidence-based instructional practices (EBIPs) are desired.

Results: Using a campus-wide online survey approach with remuneration for faculty participants, the 28-item current
instructional climate survey (CICS) and the 6-item EBIP adoption scale were developed. When CICS and EBIP adoption
scale outcomes are compared, patterns emerge which reflect the climate, conditions, and personal characteristics of
faculty at different stages of EBIP adoption.

Conclusions: Although not causal relationships, understanding both climate and personal change characteristics can
be helpful to campus change agents in assessing the current STEM landscape of faculty practices.

Keywords: Instructional climate, Measurement, STEM, Evidence-based instructional practices

When staff and faculty operate from routines, change can
be challenging. Imagine trying to have STEM faculty
move from lectures to active learning. Their underlying
belief is that good teaching involves delivery of content.
Asking them to move to a mode where they do not
deliver content violates their unarticulated beliefs about
good teaching. Cultural theories of change emphasize the
need to analyze and be cognizant of these underlying
systems of meaning, assumptions, and values; while often
not directly articulated, they can nonetheless shape
institutional operations and prevent or facilitate change
(Kezar and Holcombe 2016, p. 38).

For widespread adoption of evidence-based instructional
practices (EBIPs) to occur, the complex higher education
ecosystem must be altered; it is important for institutional
operations and instructional climate to be understood

(Association of American Universities 2017; Rankin and
Reason 2008). For many faculties in the USA, lecturing
remains widespread, with 50.6% of professors indicating a
reliance on extensive lecturing (Eagan et al., 2014). This
reliance is understandable, as many faculty members teach
as they were taught, but this level of reliance is also
surprising given the emerging empirical data about the
benefits of active learning. Freeman et al., (2014), using
a meta-analysis of 225 STEM education research studies,
concluded that active learning approaches are robustly
superior in regard to reducing course failure rates and
increasing student learning in STEM disciplines; Wieman
(2014) has referred to lecturing as “…the pedagogical
equivalent of bloodletting” (p. 8320). Given the increasing
pressures to transform institutions in regard to under-
graduate STEM education (Weaver et al., 2016) and the
understanding that changing teaching behaviors is personal
and difficult to achieve (Andrews and Lemons 2015), those
institutions attempting institutional change would benefit* Correspondence: elandru@boisestate.edu
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from measures of instructional climate (Adams Becker
et al., 2017) as well as indicators of the adoption of active
learning approaches. To fully understand how STEM faculty
make changes to their teaching practices, the instructional
climate is one of the key indicators; in fact, Kober (2015)
concluded that “…a lack of attention to the larger institu-
tional context is one reason why research-based practices in
undergraduate science and engineering education have not
produced more widespread change, despite evidence of their
effectiveness” (p. 177). The ability to assess the current
teaching landscape could be an important ally in these
efforts. That is, if the subjective norm of the environ-
ment becomes teaching via EBIPs rather than lecture,
according to Ajzen’s (1991) theory of planned behavior
faculty members who remain in lecture mode will be
more inclined to change given the new environmental
conditions. If there is a tipping point (Gladwell 2002)
for faculty in STEM departments to be predisposed to
transforming their teaching practices toward more active
learning approaches, it would be helpful to have measures
of instructional climate available so that campus leaders
can leverage prevailing trends and ensure adequate support
for faculty members in every EBIP adoption stage.

Measuring instructional climate
Measuring the instructional climate of a college or univer-
sity is important if the desired goal is to create and measure
transformational change around teaching and learning. In
fact, the values of an organization, including its underlying
assumptions, are key drivers of and barriers to change
(Kezar and Holcombe 2016). There is no shortage of avail-
able instruments for measuring teaching practices, either by
using self-report surveys (e.g., Postsecondary Instructional
Practices Survey (Walter et al., 2016) and Teaching Prac-
tices Inventory (Wieman and Gilbert 2014), or observa-
tion protocols (e.g., Reformed Teaching Observation
Protocol (Piburn et al., 2000) and Classroom Observation
Protocol for Undergraduate STEM (Smith et al., 2013)).
However, our interest is in the faculty perceptions of the
instructional climate, which includes more than the peda-
gogies selected for use. Even though there are measures of
instructional climate that exist in the literature in various
forms (e.g., measuring departmental climate from Walter
et al., (2016)), our desire was to create a climate measure
that was (a) specific to the instructional climate of a univer-
sity and (b) designed to measure the climate elicited from a
specific organizational change process/theory. Literally, cli-
mate is a local phenomenon, and thus, it seemed logical to
develop a local instrument, but also to be vigorous in estab-
lishing the validity and reliability of its measures.
Many change models exist, such as the Gess-Newsome

et al., (2003) model for faculty change and the Henderson
et al., (2011) four-quadrant model of strategies for change.
We utilized Dormant’s (2011) CACAO (Change, Adopters,

Change Agent, and Organization) model because of our
familiarity with the model and access to local experts in
using this model (see also Shadle et al., 2017). The CACAO
model is rooted in Rogers (2003) diffusion of innovation
theory that specifically outlines a set of actions that can be
taken to facilitate change. In the context of the present
study, implementation of the CACAO change model is the
intervention strategy that has been used to facilitate the
adoption of active learning practices by faculty members.

Evidence-based instructional practice adoption stages
With the presumption that there are steps or stages of
change through which faculty move as they adopt new
teaching approaches, it would be useful to know a faculty
member’s particular status within the continuum of change;
a one-size-fits-all intervention strategy is unlikely to be
universally successful when STEM faculty members
vary in their readiness to adopt. To this end, we used a
Guttman scaling approach to develop our EBIP adoption
scale. Well-developed Guttman scales are inherently intui-
tive because (1) responses are merely yes or no and (2)
scoring is easy and obvious by examining when/where the
pattern of responses changes. Although there are multiple
good survey inventories available in the literature where
faculty members describe their usage of pedagogical prac-
tices (PIPS, TPI), to our knowledge, there is no existing
measure that allows a faculty member to self-identify their
level or stage of adoption of evidence-based instructional
practices. That is, a teaching practices inventory may help
a faculty member report that their predominant teaching
pedagogy is lecture, but that same inventory does not yield
information about that faculty member’s thoughts about
alternative EBIP strategies, whether they have imagined
using an EBIP in their course, whether they have attended
a workshop about adopting a new EBIP, and so on.
In the change model, Dormant (2011) suggested five

levels or stages of the potential adopter, described here: (1)
Awareness: The potential adopter is passive about the
change, has little/no information about the change, and has
little/no opinion about the change; (2) Curiosity: The po-
tential adopter wants more information about the change,
actively engages in asking questions about the change, and
asks questions about personal impact; (3) Mental tryout:
The potential adopter is in a pre-commitment stage,
imagining how the change would be made, asking job-
focused questions (with job-focused concerns) about
the impact of the change; (4) Hands-on tryout: The
potential adopter has made the commitment to change,
wants to learn how to implement the change, has opinions
about the change, and asks questions about the change
relative to organizational context; and (5) Adoption:
The potential adopter has now actively made the
change, is able to make suggestions for improvement
regarding the change, and may seek out expert opinion for
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answers to detailed questions about the change. Although
not specifically articulated in Dormant’s model, if aware-
ness is stage 1, there could essentially be a stage 0, that is,
a pre-awareness stage.
Given the goal of changing STEM faculty adoption of ac-

tive learning, it would be valuable to know the current stage
of a faculty member, and perhaps also the cumulative status
of a department. A faculty member who is unaware of EBIPs
will need a different level of support and training than a fac-
ulty member who is a long-time adopter of EBIPs; for fac-
ulty developers and campus change agents, one size
(intervention) does not fit all. Departmental context is also
an important factor to consider when attempting to change
faculty teaching behaviors (Lund and Stains 2015; Manduca
et al., 2017). The intervention strategies implemented by
campus change agents for those in the awareness and curi-
osity stages should certainly be different compared to those
intervention strategies implemented for faculty members in
the hands-on tryout or adoption stages (Dormant 2011). An
understanding of the adoption stage, paired with current in-
structional climate data, could provide change agents with
useful information about which faculty and departments are
most ready for intervention efforts. Given this context,
our research questions include: (1) When attempting to
measure the construct of instructional climate, what
are the reliable and valid components or factors that
emerge? (2) Can a straightforward scale be developed
that allows STEM faculty to meaningfully self-identify
their own adoption stage regarding the usage of evidence-
based instructional practices? and (3) How are measures of
instructional climate and EBIP adoption stage useful to cam-
pus leaders, and how might these measures be related to
existing demographic variables that describe the sample?

Method
Participants
In order to understand institutional climate and adoption
stages, all Boise State University faculty with teaching
responsibilities (N = 1799) during the Fall 2015 and Spring
2016 semesters were surveyed in 2016; respondents
received $10.00 remuneration placed directly on their
campus identification card. To qualify as a faculty member
with teaching responsibilities, the following criteria were
utilized: (a) the faculty member had to be listed as teach-
ing at least one course in the Registrar’s database and (b)
the course must have an enrollment greater than one
(which allowed ruling out independent study/thesis type
courses). This method generated a comprehensive list of
instructors, including graduate students, adjunct faculty,
tenure and non-tenured full-time faculty, administrators
with a teaching appointment, off-campus instructors, and
online instructors. With 528 usable responses, the overall
response rate was 30.1%.

Materials
Development of the current instructional climate survey
We used Dormant’s (2011) change process/protocol in
order to engage faculty members in thinking about an
end state on our campus (Shadle et al., 2017) that would
look like this:
The culture of teaching and learning at Boise State will

be characterized by an on-going exploration and adoption
of evidence-based instructional practices which includes (a)
faculty engaged in continuous improvement of teaching
and learning; (b) dialog around teaching supported through
a community of practice; and (c) teaching evidenced and
informed by meaningful assessment. The fulfillment of
this vision will result in increased student achievement
of learning outcomes, retention, and degree attainment,
especially among underrepresented populations.
Working with two groups of STEM faculty based on

convenience sampling, we engaged these faculty members
to describe the positive and negative aspects of moving
toward the desired end state. Faculty responded on paper
surveys in each of the five key characteristic areas in
regard to achieving the goal state (relative advantage,
simplicity, compatibility, adaptability, and social impact;
Dormant 2011). Based on pilot testing from the CACAO-
based change adoption process and with the aid of a survey
design expert, we organized responses using a modified
Q-sorting technique (see Nitzberg (1980) and DeNelsky
and McKee (1969) for more Q-sort examples) to identify
thematic trends. From these empirically-derived themes,
we generated the initial item pool for the current instruc-
tional climate survey (CICS). For example, faculty noted
“a sense of central administration taking over” as a poten-
tial barrier to changing instructional practices. In re-
sponse, we crafted a semantic differential item with the
stem “I believe that the campus culture…” with the an-
chors ranging from “limits the choice of teaching
methods” to “allows for the free choice of teaching
methods.” Thus, each item in the CICS was based on
this analysis of the positive and negative aspects of the
potential change (i.e., drivers and barriers) in working
toward the desired end state, see Tables 1, 2, and 3 for
the CICS items. Items were pilot-tested and re-tested
until the resulting pool of 28 items was finalized. It is
important to emphasize that all of the items generated
for this work originated from STEM faculty members.
The first 24 items of the CICS were answered on a 1

to 7 semantic differential scale, as described above.
Another example of this type of scaled item “I believe that
the campus culture…” with the low (value = 1) anchor
being “connects me with other teachers” and the high
(value = 7) anchor being “isolates me from other teachers.”
The remaining four items of the CICS were answered
using a Likert-type agreement scale from 1 = strongly
disagree to 5 = strongly agree. After pilot testing, the
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nature of these items appeared to be better answered on
an agreement scale rather than a semantic differential
scale. Examples from this last section of the CICS include
the stem of “I believe that my institution provides…” and
items such as “flexible, physical spaces for teaching and
learning” and “adequate assessment mechanisms/support.”

Development of the evidence-based instructional practices
adoption scale
The items in the EBIP adoption scale were developed, a
priori, to be used as a Guttman scale with yes/no responses.

Our goal was to generate at least one yes/no question for
each of the five CACAO adoption stages (Dormant 2011).
Members of the research team, working with a survey
expert, generated a pool of Guttman scale (yes/no) items
that comprised the initial item pool for pilot testing. After
pilot testing, one item was selected to map onto each
stage of the CACAO change model. One of the objectives
of a Guttman scale is unidimensionality, that is, the
measure of a singular construct—in the present case,
this singular dimension is the faculty members’ degree
of adoptions of EBIPs.

Table 1 Campus climate

Item no. Item M (SD) Item

1 is generally supportive of teaching. 2.62 (1.5) is generally unsupportive of teaching.

2 limits the choice of teaching methods. 5.48 (1.5) allows for the free choice of teaching methods.

3 promotes faculty-centered teaching. 4.56 (1.5) promotes student-centered teaching.

4 values research more than teaching. 3.38 (1.7) values teaching more than research.

5 is student-success oriented. 2.98 (1.5) is not student-success oriented.

6 connects me with other teachers. 3.50 (1.6) isolates me from other teachers.

7 does not value teaching ability in hiring decisions. 4.29 (1.7) does value teaching ability in hiring decisions.

8 discourages me from trying new teaching techniques. 5.48 (1.5) encourages me to try new teaching techniques.

9 values the assessment of student learning outcomes. 2.92 (1.6) does not value the assessment of student learning
outcomes.

10 values teaching more than research in tenure and promotion
decisions.

5.18 (1.5) values research more than teaching in tenure and
promotion decisions.

11 is shaped by leaders who are not supportive of my
teaching.

4.83 (1.5) is shaped by leaders who are supportive of my teaching

12 encourages use of evidence-based instructional practices 2.77 (1.4) discourages use of evidence-based instructional practices

13 does not value teaching. 5.22 (1.5) values teaching.

14 does not allow faculty to teach using any method
they choose.

5.55 (1.3) allows faculty to teach using any method they choose.

15 breeds divisiveness in teaching discussions. 5.12 (1.4) breeds collaborative teaching discussions.

16 is characterized by high faculty-student rapport. 3.12 (1.4) is characterized by low faculty-student rapport.

For this seven-point semantic differential scale, the left-most response was coded 1 and the right-most response was coded 7. Individual item Ns vary from 516 to 536
Means (M) and standard deviations (SD) for current instructional climate survey (CICS) items
For each item, please select the scale point that best represents your opinion. Each statement begins with “I believe that the campus culture…”

Table 2 My teaching

Item no. Item M (SD) Item

17 faculty-centered. 5.84 (1.2) student-centered.

18 unmonitored. 3.78 (1.8) monitored.

19 a small part of my professional identity. 5.52 (1.5) a large part of my professional identity.

20 not valued. 5.25 (1.5) valued.

21 more important than my research. 3.58 (1.8) less important than my research.

22 not informed by discussions with colleagues. 5.30 (1.5) informed by discussions with colleagues.

23 less important than my research when I am considered
for tenure and promotion.

3.10 (1.5) more important than my research when I am considered
for tenure and promotion.

24 not informed by research about best practices. 5.58 (1.2) informed by research about best practices.

For this seven-point semantic differential scale, the left-most response was coded 1 and the right-most response was coded 7. Individual item Ns vary from 499 to 532
Means (M) and standard deviations (SD) for current instructional climate survey (CICS) items
For each item, please select the scale point that best represents your opinion. Each statement begins with “I believe that my teaching is…”
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Self-scoring of Guttman scales is evident when the
pattern of responses changes from yes to no. This goal
is operationalized in the calculation of the coefficient of
reproducibility (CR); a CR = 1.0 would indicate a perfectly
replicable Guttman scale. In practice, a CR > .90 is consid-
ered the standard of evidence for unidimensionality
(Abdi 2010; Aiken and Groth-Marnat 2006; Guest 2000).
However, if extreme patterns of responses to an item
emerge or an individual responds with an extreme pattern
(e.g., answering all of the items with yes), these types of
patterns can lead to an artificially high CR (Guest 2000;
Menzel 1953). To counteract this, Menzel (1953) devel-
oped the coefficient of scalability (CS), “…which measures
predictability of the scale relative to the level of prediction
afforded by consideration solely of the row and column
totals” (p. 351). The recommended standard for a CS is .60
(Guest 2000; Menzel 1953).
Following the formulation and pilot testing of the

Guttman scale items, this new instrument was adminis-
tered to 528 participants at the same time of the CICS item
administration, see Additional file 1: Table S1 for the seven
EBIP adoption scale items. Following data collection,
responses were assembled and ordered from most agree-
ment (highest number of yes responses) to least agreement
(lowest number of yes responses). For each item, scale
errors were calculated following Aiken and Groth-Marnat
(2006) and Guest (2000) and marginal errors (i.e., non-
modal frequencies) were calculated according to the
methods suggested by Guest (2000) and Menzel (1953).
Any participant who left a Guttman item blank was
eliminated from the analysis (N = 14); this resulted in
the data from 514 respondents utilized for the Guttman
scale analysis.
Similar to the process of eliminating items from a

scale to increase inter-item reliability as evidenced by a
Cronbach’s α, Guttman scale items were systematically
tested in order to achieve adequate levels of reproduci-
bility and scalability. Ultimately, the original item #2 was
removed from the initial seven items, and this process
resulted in a six-item scale (see Additional file 1: Table S1)
with a CR = .931 and a CS = .792. This process is similar
to using inter-item coefficients when testing the Cronbach’s

α of Likert-type subscales; removal of the original item #2
allowed for the resulting Guttman item pool to reach
acceptable reliability.

Demographics
The demographic questions included faculty rank, total
years teaching experience in higher education and at
Boise State, the year graduated with their highest academic
degree, the highest academic degree in one’s primary dis-
cipline, the primary academic department or unit, tenure/
tenure track or non-tenure track, age, gender, whether or
not the faculty member has an office on campus, an
approximation of one’s normal workload that involves
teaching and research, and institutional identification
number (this was necessary in order to remunerate partici-
pants for survey completion), see Additional file 2: Table S2
for the demographic characteristics of the overall sample.

Procedure
At the end of January 2016, all Boise State faculty with
teaching responsibilities were invited via E-mail to complete
the current instructional climate survey (CICS), the
Postsecondary Instructional Practices Scale (PIPS; Walter et
al., 2016), the EBIP Adoption Scale, and demographic ques-
tions. The PIPS items are not analyzed as part of the
current study. All measures were administered online via
Qualtrics. Survey participation closed at the end of February
and during the time the survey was available; two follow-up
reminders were E-mailed to non-respondents only. Respon-
dents could take as much time as they wanted to reply to
survey items. Respondents received $10 placed directly on
their university identification card.

Results and discussion
This section is subdivided based on the outcomes of the
development of the CICS and the EBIP Adoption Scale,
including subsections on descriptive outcomes, CICS
factor analysis results, climate and adoption scale results
considered together, factor analysis results, and analyses
based on select demographic variables. A discussion of
each of the outcomes is included here for clarity, followed
by a Conclusions section.

Descriptive outcomes for the CICS and EBIP adoption scale
For the overall means and standard deviations for all of
the CICS survey items, see Tables 1, 2, and 3. Note that
for the first two sections of the CICS, each item was
answered on a seven-point semantic differential scale,
with the left-most response coded as 1 and the right-
most response coded as 7. For example, for the item “I
believe that the campus culture (‘does not value teaching’
to ‘values teaching’),” a lower score means that faculty
responses were closer to the left-most “does not value
teaching” anchor (1), and a higher score means that faculty

Table 3 My institution

Item no. Item M (SD)

25 adequate resources to support teaching. 3.82 (1.0)

26 flexible, physical spaces for teaching and learning. 3.38 (1.1)

27 adequate mechanisms for evaluating teaching. 3.10 (1.1)

28 adequate assessment mechanisms/support. 3.32 (1.0)

Individual item Ns vary from 529 to 532
Means (M) and standard deviations (SD) for current instructional climate
survey (CICS) items
For each item, please select the scale point that best represents your level of
agreement, with 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, and
5 = strongly agree. Each statement begins “I believe that my institution provides…”
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responses were closer to the right-most “values teaching”
anchor (7), with an exact midpoint at 4.0. For this particular
item, the mean response value was 5.22 (SD = 1.5), meaning
that across all faculty respondents, on average, they tend to
believe that the campus culture values teaching. With
regular and meaningful measurement, answers to par-
ticular items can be helpful. For instance, observing
relatively high values on the initial measurement can
inform researchers that the current campus climate on
a particular issue is highly positive; given this observation,
efforts to significantly increase perceptions may be difficult
due to ceiling effects.
The descriptive outcomes for the EBIP adoption scale

responses consist of scale scores and how they map onto
Dormant’s (2011) CACAO change model adoption stages.
For these results, see Additional file 1: Table S1. This type
of measure could be particularly valuable over time, as
shifts in departmental culture can be tracked based on
the distribution of faculty across different stages of EBIP
adoption.

Factor analytic outcomes for the CICS
All responses to the 28-item CICS, items were subjected
to exploratory factor analysis using a varimax rotation,
eigenvalues > 1.25, and factor loadings > 50. A five-factor
solution emerges explaining 54.1% of the variance.
The theme that emerges for factor 1 (items 14, 2, 8, and

15; see Tables 1, 2, and 3) is the free choice of teaching
methods, which involves the encouragement of using new
teaching methods as well as collaborative discussions;
inter-item reliability using Cronbach’s α = .797. The higher
the factor 1 score, the greater the belief that the free
choice of teaching methods exists. The theme for factor 2
(items 27, 28, 26, and 25) is institutional support, meaning
that there is adequate support for teaching, assessment,
evaluation, and the availability of physical, flexible spaces
for teaching; inter-item reliability using Cronbach’s α = .805.
The higher the factor 2 score, the greater agreement that
there is institutional support for teaching. The theme for
factor 3 (items 10, 4, and 23, with reverse coding for item
10) is teaching-research balance, including the relative valu-
ing of teaching and research in hiring as well as promotion
and tenure decisions; inter-item reliability using Cronbach’s
α = .759. The higher the score for factor 3, the more that
teaching is valued over research, including hiring and
promotion and tenure decisions. The theme for factor 4
(items 9 and 12, with both items reverse-coded) is the
encouragement to use evidence-based instructional
practices, especially as related to assessing student learning
outcomes; inter-item reliability using Cronbach’s α = .619.
The higher the score for factor 4, the greater the belief that
the campus climate encourages the use of evidence-based
instructional practices. Lastly, the theme for factor 5
(items 22 and 6, with item 6 reverse-coded) is teacher

connectedness, involving the connections and conversations
with teaching colleagues; inter-item reliability using
Cronbach’s α = .615. The higher the score for factor 5,
the greater connectedness with teaching colleagues,
especially as related to teaching discussions. Even though
the inter-item reliabilities are low for factor 4 and factor 5,
they were retained here for explanatory purposes.

Combination of climate and adoption stage: CICS factor
scores and EBIP adoption scale outcomes
Scores from the five CICS factor scores were correlated
with EBIP adoption scale scores. Due to five correlation
coefficients being generated, a Bonferroni correction was
employed to minimize family-wise error. The resulting
p critical value (pcrit) is .01. EBIP adoption scale scores
are significantly correlated with (a) factor 1 (the free
choice of teaching methods), r(531) = .13, p = .004; (b)
factor 3 (teaching-research balance), r(531) = −.18, p < .001,
(c) factor 4 (encouragement to use evidence-based instruc-
tional practices), r(528) = .14, p = .002, and (d) factor 5
(teacher connectedness), r(531) = .22, p < .001. What does
this mean? The higher the self-reported stage on the EBIP
adoption scale (a) the greater the perception of free choice
in teaching, (b) the greater the weighting of teaching in
considering teaching-research balance, (c) the greater the
perceived encouragement on campus to use evidence-
based instructional practices, and (d) the more connected
the faculty member feels to other teachers on campus.

Select demographic variables as related to CICS scores
For all of the CICS-related analyses in this section, the
Bonferroni correction was used for the five comparisons,
resulting in pcrit = .01.

Age
Answers to the items which comprise factor 1 (the free
choice of teaching methods) were significantly correlated
with age, r(493) = .15, p = .001. Younger faculty reports
greater freedom to select the teaching method of their
choice. Answers to the items which comprise factor 3
(teaching-research balance) were significantly correlated
with age, r(493) = −.12, p = .008. With the negative cor-
relation, younger faculty members report their belief that
research is valued over teaching in the teaching-research
balance.

Teaching workload
Respondents were asked to report the approximate per-
centage of their workload that involves teaching. There
is a significant correlation between responses to factor 3
(teaching-research balance) and responses to the teaching
workload item, r(526) = .13, p = .002. Faculty members
reporting higher workload percentages for teaching perceive
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teaching is more valued in hiring decisions and promotion
and tenure decisions.

Tenure/tenure track vs. non-tenure track
When the responses are compared between tenure/tenure-
track faculty and non-tenure-track faculty, significant
differences emerge for two CICS factors: (1) tenure/track
faculty (mean = 3.18, SD = 0.9) score significantly lower
than non-tenure-track faculty (mean = 3.53, SD = 0.8) on
factor 2 (institutional support), t(526) = −4.76, p < .001 and
(2) tenure/tenure-track faculty (mean = 2.58, SD = 1.3)
score significantly lower than non-tenure-track faculty
(mean = 3.45, SD = 1.2) on factor 3 (teaching-research
balance), t(526) = −7.89, p < .001. Tenured/tenure-track
faculty believe there is less institutional support for teaching
compared to non-tenure-track faculty, and tenured/tenure-
track faculty believe that research is more valued over
teaching as compared to the balance perceived by non-
tenure-track faculty.

Office on campus
For the CICS factor scores, there were three significant
differences in answers between those individuals with an
office on campus and not having an office on campus:
(1) individuals with an office (mean = 3.33, SD = 0.8)
scored significantly lower than individuals with no office
(mean = 3.68, SD = 0.8) on factor 2 (institutional) support,
t(530) = −4.07, p < .001; (2) individuals with an office
(mean = 2.96, SD = 1.3) scored significantly lower than
individuals with no office (mean = 3.73, SD = 1.1) on factor
3 (teaching-research balance), t(530) = −5.91, p < .001; and
(3) individuals with an office (mean = 5.00, SD = 1.3) score
significantly higher than individuals with no office (mean =
4.52, SD = 1.4) on factor 5 (teacher connectedness),
t(530) = 3.64, p < .001. When answers to the office on
campus item are compared to academic status (non-tenure
track vs. tenure/tenure track), there is a significant
association in the pattern of answering these two items,
X2(1) = 75.99, p < .001; 98.5% of tenure/tenure-track
faculty members have an office on campus compared to
66.1% of non-tenure-track faculty members.
Faculty members with an office on campus actually

believe that there are fewer institutional resources for
teaching compared to those faculty without offices on
campus. Faculty members without an office believe that
the institution values teaching over research more than
faculty members with an office. Lastly, faculty members
with an office report greater connectedness to other
teachers on campus compared to those faculty without
offices on campus.

Gender
There were no significant differences between male and
female responses on each of the five CICS factors.

Demographic variable relationships with EBIP adoption
scale scores
EBIP adoption scores were significantly correlated with
answers to the item about the percentage of workload
involving research, r(367) = −.12, p = .027; with the
negative correlation coefficient, the less workload involving
research, the higher the EBIP adoption score. There is a
significant difference between tenure/tenure-track faculty
(mean = 3.82, SD = 2.0) and non-tenure-track faculty
(mean = 3.42, SD = 2.2) on their EBIP adoption scores,
t(526) = 2.08, p = .038; tenure-track faculty report signifi-
cantly higher EBIP adoption scores. There is a significant
difference in answers for those individuals with an office
(mean = 3.75, SD = 2.1) and those individuals who do not
have an office (mean = 2.91, SD = 2.3) on EBIP adoption
scores, t(530) = 3.84, p < .001; those with an office report
higher EBIP adoption score. Also, there is a significant
difference between females (mean = 3.86, SD = 2.1) and
males (mean = 3.18, SD = 2.1) on EBIP adoption scores,
t(498) = −3.51, p < .001; females report higher EBIP adop-
tion scores than males.

EBIP departmental profiles
With the existence of individually based EBIP adoption
scores, departmental profiles can be created to depict
the climate or culture within a department concerning
the adoption of evidence-based instructional practices.
There are strong advocates for changes in STEM education
(Freeman et al., 2014; Wieman 2014), and utilizing EBIP
departmental profiles for STEM departments could provide
a new measure of assessing the landscape. Following the
calculation of EBIP scores in the current study, departmen-
tal profiles were created for each of the STEM departments
under study, see Fig. 1 for examples of STEM department
profiles. By reviewing the departmental profiles such as in
chemistry or computer science, campus leaders interested
in the transformation of both faculty practice and institu-
tional climate may realize that a one-size-fits-all approach
in encouraging faculty members to adopt evidence-based
instructional practices will likely not work. For instance,
multiple strategies for EBIP adoption are needed in
Chemistry due to the diversity of scores on the EBIP
adoption scale (Fig. 2). However, campus leaders might
decide to provide more resource-intensive support to
Computer Science since the bulk of respondents are
already EBIP adopters.
It is clear to see that different faculty members are

aligned at different points on the EBIP Adoption Scale;
thus, strategies for those individuals at the awareness
stage should be different than the strategies needed for
those in the mental tryout or adoption stages. Department
profiles could be a powerful source of information for
campus leaders in determining tipping points for localized,
grassroots efforts to affect teaching practices.
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Conclusions
As for limitations, this is a single sample from one institu-
tion of higher education; greater use among more and
diverse educational institutions would help to re-affirm the
reliability of the initial findings presented here. To that end,

the specific items that comprise the CICS are shared in
Tables 1, 2, and 3, and those of the EBIP adoption scale are
in Additional file 1: Table S1, with the goal of facilitating
expanded work by other researchers where interested; our
team will continue to use this instrument and continue to

Fig. 1 Departmental Profiles Based on EBIP Adoption Stage Scale Scores

Fig. 2 Departmental Profiles Based on EBIP Adoption Stage Scale Scores
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explore the case for its beneficial use. There are also subtle
distinctions between measuring the instructional climate of
an institution as compared to faculty members’ perceptions
of the climate. In the present case, perception may be
reality; that is, Kober (2015) and Kezar and Holcombe
(2016) would argue that understanding the values and
the institutional context are vital to the understanding
of change and transformation.
The CICS has become a valuable tool in our applied

work with STEM departments because it allows for an
assessment of the current institutional climate regarding
teaching and how it is perceived, valued, and supported
on campus. The five-factor structure of this scale
makes sense and its use in statistical analyses has
already allowed for meaningful insights for our applied
work. The overarching goal is for an EBIP adoption
scale score to serve as an index of an individual STEM
faculty member’s placement on the adoption scale as
described previously by Dormant (2011) and as adapted
here, specifically, for the use of evidence-based instruc-
tional practices.
This is a challenging era in higher education; a growing

focus on assessment, accountability, student learning and
student success is underway. Change will happen, voluntary
or otherwise (i.e., innovation or stagnation). Institutions will
either effect strategic, planned transformation in alignment
with national and regional goals or have it forced upon
them. To this end, it would be advantageous to have
meaningful measures in place in order to assess the
current STEM landscape regarding instructional cli-
mate and the adoption of evidence-based instructional
practices. The development of such measures is the
precise focus of this study, more specifically, to develop
a measure of current instructional climate and EBIP
adoption stage. Based on our initial findings, the CICS
appears to be a useful measure to provide campus
leaders with a current “snapshot” of STEM faculty atti-
tudes, beliefs, and behaviors regarding teaching. The
EBIP adoption scale allows for the identification of an
adoption stage for STEM faculty members, and that
information can be useful in designing effective inter-
ventions to meet faculty members where they are, and
for monitoring changes in faculty EBIP adoption and
use over time. We encourage researchers to use these
instruments in order to foster a greater understanding
of instructional climate as well as EBIP adoption stages
for individuals and group from diverse institutional
contexts.
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Calculus Reform – Increasing STEM Retention  
and Post-Requisite Course Success While Closing the Retention Gap for 

Women and Underrepresented Minority Students 
 

Abstract 

Boise State University (BSU) implemented an across-the-board reform of calculus instruction 
during the 2014 calendar year.  The details of the reform, described elsewhere (Bullock, 2015), 
(Bullock 2016), involve both pedagogical and curricular reform. Gains from the project have 
included a jump in Calculus I pass rate, greater student engagement, greater instructor 
satisfaction, a shift toward active learning pedagogies, and the emergence of a strong 
collaborative teaching community. This paper examines the effects of the reform on student 
retention. Since the curricular reform involved pruning some content and altering course 
outcomes, which could conceivably have negative downstream impacts, we report on student 
success in post-requisite mathematics and engineering coursework. 

To explore the effects of the Calculus reform on retention we focused on whether or not students 
are retained at the university immediately subsequent to the year in which they encounter 
Calculus I.  We divided 3002 student records into two groups:  those who encountered the new 
version of Calculus and those who had the traditional experience. We then compared retention 
rates for the two groups. We found that the new Calculus course improved retention (relative to 
the old) by 3.4 percentage points; a modest, but statistically significant (p = 0.020) result.  
University retention rates for women, under-represented minorities (URM), and Pell-eligible 
students were also computed. All three subgroups showed gains, with URM leading with 6.3 
percentage points of improved retention (p = 0.107)  

We then considered retention within STEM as a measure of how the Calculus reform influenced 
students. For the same groups of students, we computed the rate at which STEM majors were 
retained in STEM. Once again we found a modest overall gain of 3.3 percentage points (p = 
.078). We found strong effects on women and underrepresented minorities (URM). The new 
Calculus course improved retention for both of these groups by more than 9 percentage points, 
a large effect. At this university, under the old Calculus, women used to lag men in STEM 
retention by about 8 percentage points. After the Calculus reform this gap nearly vanished, 
shrinking to 0.5 percentage points. Under the old Calculus, STEM retention of URM students 
used to lag that of non-URM. After the Calculus reform the gap flipped, so that underrepresented 
minority students are now retained in STEM at higher rates than non-URM.  

As a final result we examined student success in courses that typically follow Calculus I. Here 
the metric is pass rate, and we compared pass rates between the students who took the new 
Calculus against those who took the old. For additional comparison we also included students 
who transferred into post-Calculus course work. Once again the reformed Calculus course led to 
better results.   

 

  



	

1.0 Introduction 
The department of mathematics recognized a strong need to completely overhaul the instruction 
of Calculus at Boise State University (BSU). This need resulted from rapid growth in STEM 
enrollment that occurred which exacerbated underlying weaknesses in the calculus sequence. 
These weaknesses included first, a lack of alignment of content, despite the presence of a guiding 
master syllabus and common textbook; second, a lack of alignment concerning assessment, 
resulting in wide variations in pass rate between instructors of different sections of the same 
course (Bullock, 2015) and third, very low pass rates – for example, the average pass rate in 
2005-6 was 51% (Callahan, 2009).  

Transformational curriculum change requires a wide degree of faculty buy-in. The record of how 
our mathematics faculty engaged in the process is described elsewhere (Bullock, 2015); it was a 
process that was intrinsically motivated, it had funding that was used to create faculty learning 
communities that met across a year, and it was phased in mostly across the spring and fall 
semesters of 2014.  

Gains from the project that have previously been reported include pass rate gains that range from 
8 to 10%, increased satisfaction by instructors, students and clients, and a shorter prerequisite 
chain – students may enroll in trigonometry as a co-requisite. While previous work has examined 
student preparation for Calculus II and shown that the “reformed” Calculus I provides suitable 
preparation, we have not previously examined student retention. Nor have we examined student 
performance in post-requisite coursework beyond Calculus II. In this paper we track and report 
on performance in post-requisite coursework, including post-requisite coursework in Dynamics, 
Fluids, Calculus III and Differential Equations.  

 

2.0 Background and Experimental Methods 
2.1 Pedagogical Approach 

The overhauled, or “reformed” Calculus I course (R-Calc) has significant pedagogical 
differences relative to how it had generally been taught prior to the overhaul (N-Calc). R-Calc 
devotes a majority of class time to students working in small groups on assignments that were 
designed along learning cycle principles to target one or two specific learning goals. In-class 
work is facilitated by the lead instructor and a peer learning assistant. Developing these in-class 
assignments was facilitated by organizing and holding year-long faculty learning communities 
(Bullock, 2015). 

Whenever possible, students work with data sets and/or continuous models selected from actual 
physical, biological, financial or other applied models, using notation, language and conventions 
of the disciplines from which the models are taken. All content is accessible from an intuitive or 
practical viewpoint, resulting in less abstraction relative to what had been previously taught in N-
Calc. 

  



	

2.2 Experimental Methods  

The primary goal of this study/paper is to measure the effect of the Calculus reform on student 
retention. There is a strong presumption that the math “pipeline” has a negative impact on 
student retention and especially on student retention in STEM majors. We neither question nor 
investigate that assumption here. Rather, we seek to measure the retention rates for students in 
the year during which they encounter Calculus I, with the aim of comparing the effects to two 
different Calculus experiences that they might have encountered.     

Q1: At what rate are students retained at BSU in the Academic year immediately 
subsequent to their enrollment in Calculus I?   

Q2: What, if any, is the difference in BSU retention rate between students who 
experience R-Calc versus those who experience N-Calc? 

Q3: At what rate are STEM majors retained in STEM in the academic year immediately 
subsequent to their enrollment in Calculus I? 

Q4: What, if any, is the difference in STEM retention rate between students who 
experience R-Calc versus those who experience N-Calc? 

Q5: What, if any, effect does R-Calc have on retention rates for URM, Women, Pell-
eligible students?   

Q6: What, if any, effect does R-Calc have on pass rates in post-requisite courses?   
 

Questions 1 and 3 are answered with descriptive statistics. The remaining questions ask whether 
a metric applied to students taking R-Calc differs from the same metric applied to students taking 
N-Calc.  In all cases the metric is a simple proportion (pass rate or retention rate) so all of these 
questions are answered by testing the following null hypothesis: 

H_0:  The [pass/retention] rate of students who took R-Calc is no different than the 
[pass/retention] rate of students who took N-Calc. 

The alternative hypothesis is that the rates are different, either larger or smaller, so we will use 2-
tailed z-tests. For Question 5 the hypotheses and tests are unchanged; we simply restrict the 
population.   

 

2.2.1 The Retention Study Population 
We gather data on students organized into four cohorts by academic year (AY). Academic years 
are named for the calendar year containing the spring semester and do not include summer terms.  
For example, AY 2013 consists of Fall 2012 and Spring 2013 semesters. For each AY, we 
include in the study all students who: 

• Were enrolled for classes in the fall term. 
• Were enrolled, as of 10th day, in a section of Calculus I in at least one of the two terms. 
• We do not include honors sections and concurrent enrollment (high school AP classes).  

Concurrent enrollment students are held out for the obvious reason that their retention is not 
relevant. Honors students are held out because there are no honors sections in R-Calc.  



	

The most recent year for which data is available is AY 2016. We extend the study back 4 years 
so that we capture a balanced picture of calculus enrollments before the transition to R-Calc. As 
indicated in Figure 1, R-Calc was phased in during the study time frame. It was still an 
experimental course in AY 2013. Scale up began in AY 2014. Since then R-Calc has been the 
dominant form of Calculus I. The four-year time frame thus includes a reasonable amount of 
time on each side of the transition, and balances the total number of records as nearly as possible 
between N-Calc (1560 records) and R-Calc (1442 records).  
 

                                        
All retention results are 
presented using this data 
set aggregated across all 
four AY’s. After checking 
every data set expanded 
into a time series we found 
no confounding trends.  
Including time series 
analysis adds little 
additional information.   
 

 
 

 

 

2.2.2 Retention Rate Study1    

Every record in the full data set includes a specified AY.  The student in that record is considered  
“Retained at BSU” if they are enrolled in the fall term of the subsequent AY. However, we do not 
consider students who graduate during their cohort AY to be either retained or non-retained. Hence  

 

Retention Rate for any subgroup is defined as2 

= (Number retained at BSU) / (Number of records – Number graduating during cohort AY) 

  

																																																													
1	Our definitions of the terms “cohort,” “retention,” and “retention rate” differ from their definitions in State 
University’s official reporting.			
2	Note that this differs from traditional definitions of retention used by BSU’s official reporting offices. For Federal 
reporting purposes, retention denominator is the full cohort, but typically only full time, non-transfer students. 
Further, official reports typically focus on first year retention, which makes graduation effectively impossible. 
Eliminating these students has a negligible effect on results, since of the 3,002 records in the data set, only 47 
represent students who end up in the Graduated category.					

Figure	1:	Number	of	students	in	N-Calc	and	R-Calc	population	



	

STEM Retention 

To study STEM retention, we restrict each cohort or subgroup to those students who have a STEM major 
declared in the fall term of their cohort AY. For these students, there are four mutually exclusive 
outcomes that we track in the subsequent AY.    

• Graduated = obtained a degree or certificate during the cohort AY. 
• Dropped Out = not graduated and not enrolled in subsequent fall term. 
• Stem-to-Stem = Retained, not graduated, and has a declared STEM major in the subsequent fall 

term. 
• Stem-to-Non = Retained, not graduated, but does not have a STEM declared major in subsequent 

fall term.  

We then compute three rates for any cohort or subgroup: 

STEM Retention Rate  
= (Number of Stem-to-Stem) / (Number of STEM Majors – Number Graduated) 
Dropout Rate   
= (Number Dropped Out) / (Number of STEM Majors – Number Graduated) 
Leave STEM Rate   
= (Number of Stem-to-Non) / (Number of STEM Majors – Number Graduated) 

 
Students are split into those who encountered R-Calc and those who encountered N-Calc. We 
consider the former to be a treatment population and the latter a control population. The natural 
experiment allows us compare their retention rates to determine the effect of calculus 
transformation.   
2.2.3 Course Pairs Study 

To examine the effects of the reformed Calculus I curriculum on post-requisite math, physics and 
engineering courses, we study longitudinally paired courses:  the first is always Calculus I and 
the second is one of: 

• Calculus II 
• Calculus III 
• Differential Equations 
• Physics 

 

• Statics 
• Dynamics 
• Fluids 
• Mechanics of Materials 

 
We use a similar population for this study: all students who encountered these courses in the 
stretch form AY 2013 to AY 2016, but this time we include summer terms.  The data set splits 
into those who used R-Calc as the prerequisite and those who used N-Calc.  For these two groups 
we compare the pass rate in post-requisite courses. Again we have a natural experiment where 
the comparison of pass rates provides a measure of the impact of the calculus reform.   
 

3.0 Results  
The results section is divided into two major categories. First we discuss retention, looking at 
general retention (retained at BSU), and then we focus on STEM specific retention. In both cases 



	

we examine retention for women, URM, and for those who are Pell-eligible. The second major 
section concerns post-requisite course success, which we examine using course-pair data. 

3.1 Retention 
3.1.1 General Retention Rates – Retained at BSU 

Our first result is a comparison 
of general retention rates for R-
Calc versus N-Calc.  The top 
row of Table 1 shows the 
retention of all students after R-
Calc compared to those who 
encountered N-Calc. Subsequent 
rows show the comparative retention rates for women, URM, and Pell-eligible students. 
Statistical significance (two tailed z-test, p < 0.05) is highlighted if it occurs.   

The conclusion is that R-Calc shows an improved retention rate (3.4%, p = 0.020). The null 
hypothesis, that R-Calc has no effect on retention is rejected. The effect size is small. This is a 
modest result and is consistent with the fact that pass rates are better in R-Calc across the same 
period of time (7.5 points higher for this cohort of students.)    

When this picture is restricted to Female students, URM, or Pell-eligible there are similar results. 
For Female students, the gain is the same as for the full cohort. Pell-eligible students do slightly 
worse (but still gain in R-Calc). URM gain a decent amount. In all cases the p-values are small 
but non-significant—we cannot reject the null hypothesis. Nonetheless, the results are still 
encouraging. In particular, it is clear that retention gains in R-Calc are not obtained as a result of 
boosting the performance of white males.    

3.1.2 STEM Retention Rates – Are STEM majors still in STEM next fall? 

While the general retention data is interesting and encouraging, the bigger and perhaps more 
important story is revealed when examining retention in STEM.  

We begin with a look at 
STEM retention for our 
full study population, 
Table 2. The study 
population drops to 2,352 
since we exclude those 
with no STEM major in their cohort AY and also exclude the tiny number who graduate during 
their cohort AY. Coincidentally, this results in an almost perfect split into equal numbers for R-
Calc and N-Calc.  Because it is of some interest where students end up if they are not retained in 
STEM, we measure three 
retention outcomes: STEM to 
STEM (originally STEM 
major, stayed in STEM); 
STEM to Non-STEM 
(originally a STEM major, 

Table	1:	Retention	Rate	(Retained	at	BSU)	
		 N-Calc	 R-Calc	 Effect	Size	 p-value	 N	
All	 78.9%	 82.3%	 3.4%	 0.020	 2995	
Female	 80.8%	 84.4%	 3.6%	 0.181	 792	
URM	 76.6%	 82.8%	 6.3%	 0.107	 430	
Pell		 77.2%	 79.6%	 2.4%	 0.352	 1040	

Table	3:	STEM	Retention	Rates	
		 N-Calc	 R-Calc	 Effect	Size	 p-value	
STEM-to-STEM	 69.8%	 73.1%	 3.3%	 0.078	
STEM-to-Non	 9.4%	 9.2%	 -0.3%	 0.821	
Dropped	Out	 20.8%	 17.8%	 -3.0%	 0.064	

Table	2:	Retention	of	STEM	Majors	--	Headcount	
		 STEM-to-STEM	 STEM-to-Non	 Dropped	Out	 Total	
N-Calc	 820	 111	 244	 1175	
R-Calc	 860	 108	 209	 1177	
Total	 1680	 219	 453	 2352	



	

switched to a Non-STEM major), and Dropped Out (left the university). These are expressed as 
percentages, along with R-Calc versus N-Calc effects and p-values in Table 3. Things of note in 
the data from Table 3, depicted in Figure 2 include:  The modest retention gain for R-Calc is 
essentially the same as the general retention gain. However, note that none of the gain comes 
from keeping students in STEM. All of the gain comes from preventing dropouts. In terms of 
headcount, it appears that R-Calc keeps about 10 more students per year in STEM, essentially by 
keeping them in school at all. 

3.1.3 STEM Retention Rates – WOMEN and URM	

We now consider the retention of women and URM who are STEM majors, where the results 
begin to show large differences. In Figures 3 and 4 it is clear that the retention gains from R-Calc  

 

are bigger than for the full cohort. Also, 
there is a distinct difference in where the 
students are going. Unlike the general 
case, there are evident differences in the 
STEM-to-Non category.  

This is more evident in numerical data 
(Table 4). Both groups show very large 
gains in retention after R-Calc as 
compared to N-Calc. For women, the 
effect size is 9.1% with a p-value of 
0.0224.  This value is statistically 
significant; the claim that R-Calc has no 
effect on retention of Women in STEM at 
BSU is rejected. For URM, the effect size 
is 9.4%, with a p-value of 0.0659, which does not quite reach statistical significance.   

Table	4:		STEM	Retention	–	Women	and	URM	
Women	

		 N-Calc	 R-Calc	 Effect	
Size	

p-value	

STEM-to-STEM	 63.6%	 72.7%	 9.1%	 0.0224	
STEM-to-Non	 14.6%	 10.4%	 -4.2%	 0.1392	
Dropped	Out	 21.8%	 17.0%	 -4.9%	 0.1482	
URM	

		 N-Calc	 R-Calc	 Effect	
Size	

p-value	

STEM-to-STEM	 65.7%	 75.1%	 9.4%	 0.0659	
STEM-to-Non	 11.7%	 6.9%	 -4.8%	 0.1463	
Dropped	Out	 22.6%	 18.0%	 -4.6%	 0.3066	
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40.0% 
60.0% 
80.0% 

STEM	Retention	-- Women
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Figure	3:	STEM	retention	-	Women	
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Figure	4:	STEM	retention	-	URM	



	

Moreover, unlike the general case, in both of these groups the retention gain is composed of 
equal parts “stayed in school”, and “stayed in STEM”.  Given that STEM in particular is prone to 
retention gaps for these populations, this is an important result.   

It is also worth looking at this from the point of view of retention gaps. That is, rather than 
measuring impact on women, or perhaps comparing to a general baseline, consider the direct 
comparison of retention rates for women versus men. Table 5 shows our data. 

Both men and women benefit from retention gains 
under R-Calc, but gains for women are so large that 
an 8% gap is almost entirely eliminated. 	

A similar picture emerges for URM (Table 5). Here 
the pre-existing gap was smaller, and there is a 
complication due to international students. 
Internationals are retained in STEM at considerably 
higher rates than any other group. In all prior 
computations, this has had little to no effect (we 
checked) because the international students are either 
not part of any computation, or they are relatively 
evenly split between N-Calc and R-Calc (163 and 153 
respectively, which if anything, gives a boost to N-
Calc retention rates.)  However, the demographic 
variable that detects URM takes on three values: 
URM, Non-URM, and International.  So, for 
measuring gaps between URM and other student 
groups, it matters whether or not International 
students are included in the non-URM control group. 
Table 5 shows the results for both cases. As usual, all 
groups gain. Here, the gains for URM versus either 
alternative group are so large that a retention gap 
actually flips.  

After R-Calc, URM are retained at higher rates than either comparison group.   

3.1.4 STEM Retention Rates – Pell-Eligible 

Unfortunately, there is no such good news for Pell-eligible students, see Table 6. This group still 
gains from R-Calc, but the gain is 
slightly less than the gain for all 
R-Calc students. Also, like the 
general case, the gain is entirely 
from fewer dropouts. There is no 
additional capture of students 
departing for other majors. 

 

  

Table	5:	STEM	Retention	Gap	–	
Women,	URM	w/o	Intn’l,	URM	
w/Intn’l	

Women	v	Men	
		 N-Calc	 R-Calc	
Female	 63.6%	 72.7%	
Male	 71.5%	 73.2%	
Gap	 -7.9%	 -0.5%	

	
URM	v	Non-URM,	no	International	
			 N-Calc	 R-Calc	
URM	 65.7%	 75.1%	
Non-URM,	no	
Intn'l	

67.9%	 70.5%	

Gap	 -2.2%	 4.6%	

URM	v	Non-URM	plusInternational	
		 N-Calc	 R-Calc	
URM	 65.7%	 75.1%	
Non-URM	and	
Intn'l	

70.3%	 72.7%	

Gap	 -4.6%	 2.5%	

Table	6:	STEM	Retention	–	Pell-Eligible	
		 N-Calc	 R-Calc	 Effect	Size	 p-value	
STEM-to-STEM	 68.4%	 71.2%	 2.8%	 0.3885	
STEM-to-Non	 8.0%	 8.1%	 0.1%	 0.9590	
Dropped	Out	 23.6%	 20.8%	 -2.9%	 0.3236	



	

3.2 Success in post-requisite coursework: Course Pair Data 

In this section, we revisit an analytic device (Bullock, 2016). We track student performance in 
courses that are typically taken subsequent to Calculus I.  We then compare their success in these 
post-requisite courses’ follow-on courses, depending on which version of Calculus I they used as 
the prerequisite. In our previous work we studied only the performance in Calculus II, comparing 
students who took R-Calc against those who took N-Calc. In this paper, we significantly expand 
the analysis to include a large set of Math, Engineering and Physics post-courses (section 2.2.3)   
We also include, for additional comparison, performance in the post-course for the cohort of 
student who did not take 
Calculus I at BSU. This is 
intended as primarily 
descriptive statistical 
evidence. However, we 
include significance testing 
of the difference in post-
course pass rates for the R-
Calc and N-Calc groups.   

The Effect Size and p-value 
are only for the comparison 
of R-Calc to N-Calc. We do 
not analyze transfer 
students; they are provided 
only for descriptive 
comparison.  

 

3.2.1 Course-pair data – success in post-requisite courses  

Overall 

Table 7 and Figure 5 show the pass rate data for the full range of post courses, with students split 
into N-Calc, R-Calc, 
and Transfer.3 Notice 
that in most courses, R-
Calc students 
outperform N-Calc. 
Positive effect sizes 
tend to be larger than 
negative effects, and 
have greater statistical 
significance as denoted 
by smaller p-values. 
The only negative effect 
																																																													
3	Footnote:  There is a small chance that students in “Transfer” did not actually transfer the prerequisite Calculus I 
course to BSU, but the number of such instances would be very small.	

Table	7:	Post-Course	Pass	Rates	--	Individual	Courses	
		 N-Calc	 R-Calc	 Transfer	 Effect	Size	 p-value	 N	
Calc	II	 68.4%	 70.9%	 70.6%	 2.5%	 0.247	 1,983	
Calc	III	 72.8%	 81.0%	 70.5%	 8.1%	 0.005	 1,055	
Diff	Eq	 77.7%	 76.5%	 72.3%	 -1.2%	 0.719	 953	
Statics	 77.0%	 70.8%	 80.7%	 -6.2%	 0.104	 693	
Dynamics	 73.5%	 83.9%	 76.1%	 10.3%	 0.038	 391	
Fluids	 61.5%	 82.5%	 70.7%	 21.0%	 0.001	 352	
Mech	Mat	 71.9%	 80.7%	 73.2%	 8.8%	 0.098	 420	
Physics	 81.4%	 81.1%	 74.8%	 -0.3%	 0.883	 1,462	

Figure	5:	Post-Course	Pass	Rates	



	

that calls for attention is perhaps the effect in Statics. This is unsurprising, since statics relies 
very heavily on good preparation in trigonometry and vector analysis, which are not treated in 
Calculus I.  

The post-course analysis technique was created to study the effect of R-Calc on subsequent Math 
courses, since there were concerns that content changes in R-Calc could have negative effects on 
later Math courses. Table 8 presents the result of aggregating all the Math post-courses, and 
some other aggregates. 

There are positive 
effects in Math and 
Engineering, in the 
aggregate. While 
these are not quite 
statistically 
significant, they are 
still an encouraging result. When all courses are aggregated, the positive effect is statistically 
significant:  We may conclude that R-Calc does a better job of preparing students for subsequent 
course work, although the effect is fairly small.   

3.2.2 Course-Pair Data – Success in post-requisite courses, Female and URM 

Figure 6 and Table 9 show 
the effects on subgroups of 
female, URM, and Pell-
eligible students, with all 
students included for 
comparison.  

All three groups 
experience a boost from 
R-Calc.  Consistent with 
the findings on retention, 
we see that the gains for 
URM and women are 
visibly larger than the 
general gain for all 
students. Pell-eligible 
students, however, 
actually get less value (but still gain) from R-Calc. Also, interestingly, all three groups perform 

Table	8:	Post-Course	Pass	Rates	--	Course	Types	
		 N-Calc	 R-Calc	 Transfer	 Effect	 p-value	 N	
Math	 71.8%	 74.4%	 71.2%	 2.6%	 0.094	 3,991	
Engr	 72.0%	 76.7%	 75.5%	 4.7%	 0.058	 1,856	
Phys	 81.4%	 81.1%	 74.8%	 -0.3%	 0.883	 1,462	
ALL	 76.6%	 78.7%	 75.9%	 2.1%	 0.040	 8,765	

Table	9:	Post-Course	Pass	Rate	for	Subgroups	
		 N-Calc	 R-Calc	 Transfer	 Effect	 p-value	 N	
URM	 71.9%	 76.0%	 79.6%	 4.2%	 0.158	 1,108	
Female	 78.2%	 81.5%	 83.3%	 3.2%	 0.162	 1,496	
Pell	 75.4%	 76.2%	 78.0%	 0.8%	 0.671	 2,709	
ALL	 76.6%	 78.7%	 75.9%	 2.1%	 0.040	 8,765	

Figure	6:	Post-Course	Pass	Rates	for	URM,	Female,	Pell	



	

much better than transfer students. Both this and the Pell data are revealing and must be 
considered important targets for future reforms.  

 

4.0 Discussion 

The improved retention and performance in certain post-requisite courses that we have seen as a 
result of R-Calc is now discussed, and is likely influenced by (1) improved grades in the course, 
(2) increased relevancy of content, (3) active learning, (4) increased self-efficacy, and (5) 
increased sense of belonging. Other factors may also be relevant. 

Improved Grades: The literature on first-year academic success as measured by grade point 
average shows a clear association with retention; for example, see Whalen (2010) and Herzog 
(2005). Herzog (2005) also found that after GPA, the strongest predictor of retention was 
performance in first-year mathematics courses. The role of first course grade in mathematics was 
also studied by Callahan (2017), who showed that earning a grade of “A” or “B” in mathematics 
doubled the likelihood of persistence, and that grades earned are more important than the actual 
level of mathematics course (whether Calculus, Precalculus or College Algebra) taken in the 
students’ first year. Thus, improved retention is expected simply based on the fact that student 
grades are higher in the R-Calc relative to N-Calc courses. The underlying rationale behind why 
improved grades increase retention is that students who earn higher grades have a higher sense of 
self-efficacy. Students with a higher math self-efficacy are more likely to view difficult tasks as 
something to be mastered than something to be avoided (Bandura, 1977). 

Increased Relevancy of Content: The strong focus in R-Calc on providing actual examples 
from physics, biology, finance or other applied models for students to work with to solve 
calculus problems is likely to have contributed to increasing student engagement with the 
mathematics they were learning. Students who don’t find value in mathematics learning are 
likely to disengage; for example, see Allexsaht-Snider and Hart (2001). Ames (1992) reviews 
key characteristics of tasks that are likely to foster a willingness in students to put forth effort 
and become actively engaged in learning. These characteristics include tasks that involve variety 
and diversity, tasks that provide meaningfulness of content, tasks that students perceive they can 
accomplish with reasonable effort, and tasks that structure student engagement. The pedagogical 
approaches used in R-Calc very much align with these underlying theoretical principles. Other 
researchers have also focused effort on improving student learning by means of adding an 
applications-focus into calculus. For example, Young et al. (2011) developed two, one-credit 
applications “add-on” courses for students to take alongside “normal” calculus. Their work 
showed that while the first course, taken with Calculus I, did not have a statistically significant 
effect, the second 1-credit course, taken with Calculus II, did. Relative to the improved results 
seen in post-requisite coursework, it is natural that students might more easily recognize when to 
use calculus in post-requisite courses if they have already seen such examples when they took R-
Calc.  

Active Learning: It is well known that active learning increases student performance in science, 
engineering and mathematics. A metaanalysis  by Freeman, et al. (2013) of 225 studies, of which 
29 were focused on mathematics shows that active learning improves average examination 
scores by 6%, and students in classes with traditional lecturing are 1.5 times more likely to fail 
than students in classes with active learning. The metaanalysis shows, based on 15 different 



	

independent studies, that a shift to active learning shows an average of approximately 8% 
decrease in failure rate in the discipline of Mathematics. In Freeman’s PNAS report, active 
learning was defined as learning that “engages students in the process of learning through 
activities and/or discussion in class, as opposed to passively listening to an expert. The 
pedagogical shifts in this work (R-Calc) were all shifts away from “exposition-centered 
methods” (lecturing) toward constructivist approaches (active learning). 
Self-efficacy: Self-efficacy is a critical element that is strongly associated with the literature on 
retention in STEM disciplines. Bandura’s research has shown that high perceived self-efficacy 
leads students to view difficult tasks as something to be mastered, rather than something to be 
avoided. (Bandura, 1977). A recent article by Ellis, et al. (2016) shows that women are 1.5 times 
more likely to leave the STEM pipeline after calculus compared to men and identifies lack of 
mathematical confidence as a potential culprit. Their paper shows that women start and end the 
term with significantly lower confidence than men. The approaches taken in our work, which 
closed the gap in persistence between men and women in STEM, thus may have improved 
student self-efficacy, although this was not measured.  

Belongingness: Dasgupta (2011) describes the importance of the need to belong, and its 
influence on self-concept. In this work, Dasgupta summarizes how people’s behavior and 
choices are driven by the need to belong and be accepted by others within a community of peers. 
The need to belong is particularly strong under adversity or stress – and thus “is likely to play an 
important role in the lives of individuals who belong to historically disadvantaged groups and 
find themselves in adverse situations where their group is numerically scarce and their abilities 
cast in doubt, such as high-stakes academic” environments. Dasgupta reviews relevant literature 
about the imposter syndrome, and more, and goes on to suggest that collectively, “the experience 
of being in a numeric minority in high-stakes academic environments where stereotypes are in 
the air may reduce individuals’ self-efficacy or confidence in their own ability, especially in the 
face of difficulty, even if their actual performance is objectively the same as majority-group 
members.”  

The focus of Dasgupta’s 2011 article is to highlight two factors that are likely to contribute to 
increasing social belonging and to build resilience against stereotypes. These factors are, (1) 
exposure to ingroup experts, and (2) exposure to peers in high-achievement contexts. In the 
context of the increased retention of women and URM as a result of R-Calc, “ingroup experts” 
might refer to a woman enrolled in R-Calc being exposed to other women in R-Calc during the 
course of the semester in group work. Dasgupta’s “stereotype inoculation” model proposes that 
exposure to ingroup experts and peers in high-stakes achievement contexts functions as a social 
vaccine that helps inoculate individuals against self-doubt. In this work, we have not focused any 
effort to date on analyzing the group compositions, which are not regulated, but which rather 
self-aggregate according to where students place themselves in the classroom. Future work could 
examine the degree to which students align themselves with ingroup peers. 

Belongingness – feeling as though one belongs – cannot be emphasized enough relative to the 
results we have seen. As summarized by Herzig, 2005, building a sense of “belongingness in 
mathematics” has been proposed as a critical feature of an equitable K-12 education, where 
“belongingness refers to the extent to which each student senses that she or he belongs as an 
important and active participant in all aspects of the learning process.” Allexsaht-Snider and Hart 
(2001) also discuss belongingness – the extent to which each student senses that she or he 



	

belongs. The sense that each student feels as though she or he belongs in calculus is critical 
relative to future decisions made by the student to remain in STEM. 

5.0 Summary 

Our reform of Calculus has positively affected retention, at least in the year that students 
encounter Calculus I. Overall retention improved by about 4 percentage points, with gains for 
women, URM and Pell-eligible students all similar to the general case.  Retention in STEM was 
improved, in general, by about the same amount. We noted especially large gains in STEM 
retention for women and URM (exceeding 9%). These increases closed the gap in retention of 
men versus women at this university and resulted in a retention rate for URM that exceeded non-
URM students by 4.6%. We attribute these results primarily to the pedagogical shifts that have 
taken place relative to how the course is taught. These shifts include (1) collaborative work that 
occurs each day in class, and (2) a strategy of being explicit about the relevancy of calculus by 
using actual physical situations, data and units in homework problems, in-class work and exams. 

Relative to post-requisite coursework, students who experience R-Calc versus N-Calc as the 
prerequisite to later Math and Engineering course work receive a small, but statistically 
significant boost in pass rate. The effect is larger in engineering courses, as would be expected 
given the curriculum in R-Calc. As we have seen elsewhere in the Calculus Transformation 
project, the gains are even larger for women and URM, but Pell-eligible students are not as well 
served. 
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Abstract 

This study aimed to strengthen students’ trigonometry knowledge and skills by providing 

authentic contexts for knowledge application. An innovative approach was applied to guide 

students to integrate trigonometry in programming mobile apps and in developing learning 

content. Three research questions guided this study: 1) How do students apply trigonometry 

concepts in developing their mobile apps? 2) How do students perceive the experiences of 

applying trigonometry concepts in developing their mobile apps? 3) What motivates students in a 

Trig-APPS course? We found students were overwhelmingly positive about their experiences of 

reviewing, revisiting, and utilizing trigonometry through programming mobile apps. The 

innovative approach is promising in motivating students to learn foundational mathematics while 

solving design problems. 

 

Objectives 

Many students enter colleges with a need to strengthen their foundational mathematics, such as 

trigonometry. In addition, college students in STEM majors (science, technology, engineering, 

and mathematics) often struggle to apply trigonometry concepts in post-requisite courses. For 

example, in statics, a sophomore engineering course, even though many students are able to find 

the sine or cosine of a right triangle oriented in any of the four quadrants as taught in 

mathematics, they struggle with correctly applying the sine function if the triangle is presented in 

a different orientation. Similarly, students have little number sense when applying the sine, 

cosine, or tangent functions, and many cannot recognize an obviously wrong result generated by 

a calculator. Further, students have very little sense of how to resolve a vector into components. 

In this study, we aimed to strengthen students’ knowledge and skill development in trigonometry 

by providing authentic contexts for knowledge application with mobile app development. 
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Creating mobile apps can help motivate learners because they can create their own applications 

that work on the mobile devices that are important in their lives (Morelli et al., 2011). It also can 

help build their confidence in programming and creative problem solving, especially when a 

good visual programming tool (e.g., App Inventor) is used (Hsu, Rice, & Dawley, 2012; Hsu & 

Ching, 2013; Wolber, 2011). Hsu and Ching (2013) found students had strong feelings of 

empowerment and success when making mobile apps because they could unleash their creativity 

and turn their ideas into something real and tangible. Students also enjoyed testing peers’ apps—

this process helped others and also provided inspiration for their own app development. 

     

Our study piloted an innovative approach to mathematics learning. It engaged college STEM 

majors studying trigonometry by asking them to develop mobile apps for learning/reviewing 

trigonometry. These apps were expected to help in two ways by: (1) meeting immediate 

trigonometry course needs. In this constructionist approach, students who simultaneously act as 

both learners as well as app developers will be more engaged and gain improved learning 

outcomes from trigonometry instruction; (2) serving future mathematics and engineering course 

needs. Students who developed the apps can leverage them as interactive study aids to refresh 

their knowledge, should they advance to the calculus and engineering statics courses that follow 

for STEM majors one to two semesters later. 

 

Two potential student benefits were expected to result from this approach. First, to develop apps, 

trigonometry students need to revisit and apply the knowledge they have learned in class. Doing 

so provides mathematic content practice and review opportunities. Second, developing their own 

mobile apps empowers and motivates students to take ownership of their learning. Producing 

thoughtful app designs also helps them see that mathematics is relevant to authentic projects and 

can have real-world impact. These benefits are important for students and their ability to transfer 

their understanding of trigonometry to other STEM contexts later in their academic programs 

and careers. 

The following research questions (RQ’s) guide this study:       

1. How do students apply trigonometry concepts in developing their mobile apps?  

2. How do student perceive the experiences of applying trigonometry concepts in 

developing their mobile apps?  

3. What motivates students in a Trig-APPS course?  
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Theoretical Framework 

Artifact Construction      

Artifact construction is a well-known learning approach; it engages students in their learning by 

having them create tangible artifacts. Students can apply content knowledge and skills through 

artifact construction and collaboration (Harel & Papert, 1991). When students construct artifacts, 

they also construct ideas simultaneously (Noss & Holyes, 2006). During the construction 

process, students can and need to iteratively refine artifacts and ideas to achieve the learning 

goals and solve design problems. Artifacts can be physical (e.g., furniture, robots, clothes) or 

digital (e.g., graphics, computer programs, or mobile applications). A study found that after a 

semester in mobile app development, students showed significant improvement in their ability to 

design comprehensive solutions to a given problem (Dekhane, Xu, & Tsoi, 2013).  

 

Collaboration      

Collaboration initiates more complex and iterative refinement of ideas and mental models (Harel 

& Papert, 1991) than artifact construction pursued alone. Collaboration in small teams or a large 

community leads to feedback that requires learners who build artifacts to critically examine their 

working products and ideas. Learning through collaboration includes a wide spectrum of 

methods that can take many different forms, such as cooperative learning, collaborative learning, 

and collective learning. Each emphasizes different levels and ways of learning by the group and 

community (Dillenbourg, 1999), which all lead to collaborative knowledge construction (Barab, 

Hay, Barnett, & Squire, 2001) and varying ways for participants to interact during the process 

(Hsu, Ching, & Grabowski, 2014). Noss and Hoyles (2006) discussed how students can explore 

mathematics through construction and collaboration. In one of the projects, students worked 

together to apply their mathematics knowledge to program animated robots to achieve desired 

sequence and actions. In a subsequent project, Noss and Hoyles developed a system and 

specifically built in a mechanism (asynchronous discussion) for learners to communicate their 

emerging understanding of mathematics and share their developing mental models regarding 

mathematics knowledge they have learned. Considering the class size, benefits and efficiency of 

collaboration, and multiple knowledge/skill sets required in the Trig-APPS course (discussed 

below), the students in our study were asked to work collaboratively in pairs on app 

development.  

 

Methods 

A two-credit co-curricular course was created for students who enrolled in college level 

trigonometry courses in a northwestern public university in the United States in spring 2016. 

Twelve students from six STEM majors enrolled in the class participated in this study. Among 

them, 10 were males and two were female, with an average of age at 22.8 years old. Five were 

first-year students and seven were in Computer Science.  
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This course requires 2-hour meeting time across 15 weeks. Students learned about the 

foundations of App Inventor for mobile app programming in the first 4 weeks by creating 

individual apps while working through assigned tutorials. In the following three weeks, students 

were introduced to three example apps incorporating or demonstrating trigonometry concepts. 

Students worked in pairs on debugging, customizing, and improving the provided source codes 

of these apps. For the rest of the semester, students worked in pairs to conceptualize mobile apps 

that applied trigonometry concepts, created app proposals, and built the actual apps they 

proposed. Students were provided with online discussion forums to communicate and collaborate 

throughout the semester, in addition to interacting face-to-face.  

 

Data Sources 

Content analysis on the app development process and projects was conducted to examine 

students’ application of trigonometry concepts in designing and developing mobile apps. Data 

sources included students’ reflective journals and developed mobile apps, and the codes of 

student-developed apps. Student perception of the learning experience and group process of 

designing apps was investigated through interviews with 10 students. The innovative Trig-APPS 

curriculum aims to excite and motivate students in learning trigonometry through authentic app 

development activities. We slightly modified a validated survey, Instructional Materials 

Motivational Survey (Keller, 2010) to measure the motivational characteristics of the 

instructional materials through 36 Likert-scale items. We also added several open-ended 

questions to obtain input from students to help improve the design of the curriculum.  

   

Results 

RQ1: Students’ application of trigonometry concepts in developing their mobile apps 

A total of 5 complete team apps were developed by 10 students. One of the teams did not 

complete a final project app due to one student’s attendance and participation issues. The types 

of mobile apps the students developed included some combination of the following: quiz, game, 

and review guide. 

 

Trigonometry was applied in coding the mobile apps and also in the apps’ content. The concepts 

included degrees and radians conversion, unit circle, and trigonometric functions, which were 

covered in the two apps we discuss below. 

 

For example, one team created a quiz+review app that allows users to take a quiz regarding 

different angles on a unit circle. The trigonometric functions were used in the codes to make the 

app draw different graphs based on the pre-assigned angles in the question bank. The app 

presented, along with the angle, the three representations (coordinate, degree, and radian) of the 

tested angle for review purpose, after the app users have made their selection. The team also 

developed a review guide that provided clear and concise text and graphics related to major 

concepts of a unit circle. 
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Another app took advantage of game mechanics and the orientation sensor in mobile devices to 

create a quiz/game. It required users to tilt their devices left or right for a spinning boomerang 

image from top to collide with one of two choices at the bottom. It helped provide a sense of 

excitement that encouraged game players to quickly make a correct choice on degree-radian 

conversion. The team also incorporated random assignment in their codes to display various 

lengths of triangle sides to generate a series of questions on trigonometry functions. 

 

RQ2: Student perception of the experience of applying trigonometry concepts in 

developing their mobile apps  

Student responses were overwhelmingly positive. Many students commented on how app 

making fostered their learning of trigonometry. A sample comment reads, "The app we created 

made me think about the trig conversion from radians to degrees so much while testing it, I'll 

probably never forget it.” Another student stated “The fact that I had to research concepts within 

trigonometry and create games/quizzes for this material allowed me to understand trigonometry 

at a more conceptual level. This made going to math class much more enjoyable and relevant to 

the real world.”  

 

Some students commented on their problem solving skills and practice through the app creation 

process. A sample comment reads, “I think that the process of identifying a problem and creating 

a solution is an important lesson to learn.” Some students commented on the overall course 

design and instruction. One student indicated that “…the instructor is amazing at keeping the 

attention of people in a subject like CS. Some of the people in the class weren't even CS 

students, but everyone seemed motivated and looked like they were having a blast every class.” 

 

RQ3: Student motivation in the Trig-APPS course 

100% of the students rated “very true” or “mostly true” for the following statements: 

● The content of this course will be useful to me. 

● I really enjoyed working on projects for this course. 

● I enjoyed this course so much that I would like to know more about this topic. 

● As I worked on this course, I was confident that I could learn the content. 

● Completing the exercises in this course gave me a satisfying feeling of accomplishment. 

 

90% of the students rated “very true” or “mostly true” for the following statements: 

● I could relate to the content of this course to things I have seen, done or thought about in 

my own life. 

● This course has things that stimulated my curiosity. 

● The content of this course is relevant to my interests. 
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Scientific/Scholarly Significance 

Based on our initial findings, we found this innovative approach of creating and using a co-

curricular mobile app development course to enhance trigonometry learning promising in 

motivating and engaging students. The students were overwhelmingly positive about their 

experiences of reviewing, revisiting, and utilizing trigonometry through programming mobile 

apps. Through the curriculum, they were able to witness and experience a real-world 

implementation of their trigonometry knowledge. They also created tangible products that they 

can relate to and that have potential impact on learning foundational subjects in STEM. The 

mobile apps also created a need for the students to enhance and solidify their learning of 

trigonometry because the integration of their knowledge needs to be 100% accurate for the apps 

to function. 
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The Crux: Promoting Success in Calculus II 

 

Abstract 

In the 2013-14 school year, Boise State University (BSU) launched a major overhaul of Calculus 

I. The details of the reform, described elsewhere, involved both pedagogical and curricular 

changes. In subsequent years, we developed several assessment tools to measure the effects of 

the project on students’ grades and retention. The toolkit includes: (1) pass rate and GPA in 

Calculus I, (2) longitudinal analysis of pass rates and GPA in subsequent courses, (3) impact of 

Calculus I on retention in STEM and retention at BSU, (4) all of the above comparing students in 

reformed Calculus vs traditional Calculus, (5) all of the above for underrepresented minorities, 

women, or other demographic subsets. While these tools were originally developed to study the 

Calculus I project, they are available for studying the effects of other courses on student 

academic performance and retention. 

 

In this paper, we briefly describe a rebuild of Calculus II, overhauled in the 2015-16 school year 

following the same general plan as was used for Calculus I. We then present the results of 

applying the full toolkit to the new Calculus II course. Pass rate and GPA improvements in 

Calculus II were evident immediately after scale up in the spring of 2016. Sufficient time has 

now passed so that we can apply the full set of assessment tools built for Calculus I to measure 

the effectiveness of the Calculus II transformation on academic performance in post-requisite 

coursework and on student retention in STEM.  
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1.0 Introduction 

The grade earned in mathematics courses is critical when considering student retention in 

engineering and in STEM majors. For example, the work by Budny, et al. (1998) shows that the 

grade earned in the first semester course of mathematics (whether Precalculus, Calculus I, or 

Calculus II) is a strong predictor of retention in engineering. Callahan & Belcheir (2017) showed 

that of the two – level of first semester mathematics, or grade earned – that the grade earned in 

the mathematics class is a better predictor of student retention in STEM one year later than the 

level of mathematics course taken. Success in the first year of mathematics in engineering is 

paramount. 

Because of this, Boise State University is five years into an overhaul of the entry-year calculus 

sequence.  Implementation of the initial, Calculus I, phase and early results were reported in 

Bullock, Callahan, Shadle (2015).  This included pass rate gains that range from 8 to 10%, 

increased satisfaction by instructors, students and clients, and more. An examination of how 

students who have taken the overhauled Calculus I have fared in post-requisite coursework has 

been investigated in Bullock, Johnson, Callahan (2016) and Bullock, Callahan, Cullers (2017). 

The latter paper (2017) also presented the effects of the Calculus I project on retention. 

As a natural next step in continuous improvement, the mathematics department turned to 

Calculus II as their next focal area for reform. In this paper, we report on what this reform of 

Calculus II consists of, and also track and report on student grade performance in the course as 

well as in post-requisite coursework including Dynamics, Fluids, Calculus III, and Differential 

Equations. 

2.0 Background and Methods 

2.1 Calculus II Redesign 

The redesign of Calculus II followed the general plan that was used to redesign Calculus I 

(Bullock, et. al. 2015), with four major components of change: 

1. Substantial changes to content, seeking to maximize relevance to future coursework.   

2. Voluntary opt-in to a “master course” model. 

3. Redesign of each daily lesson to support active learning pedagogies.   

4. Formation of a community of practice to deliver the course. 

The content of a typical second semester Calculus course usually includes: techniques of 

integration (symbolic with no machine assistance, plus some numerical integration), applications 

of integration (physical applications and solids of revolution), sequences and series (emphasizing 

proofs of convergence and culminating in Taylor series), and a smorgasbord of parametric 

functions, polar coordinates, conics, and differential equations.  We rebuilt the content to focus 

tightly on four units: 

 4 weeks of symbolic integration. Restricted to a minimal list of types vetted by 

stakeholders.   

 4 weeks of sequences and series.  No proofs. Qualitative understanding of convergence.  

Quantitative speed of convergence. Taylor polynomials as applied approximations.  
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 4 weeks of applications of integration.  Heavy emphasis on student understanding and 

communication of the underlying geometry (vs. formalism).  Applications to loads, 

forces, moments, centroids, work, and energy.    

 3 weeks of 2-D parametric and vector valued functions. Mimicking the notation and 

language of the 3-D material that begins Calculus III at Boise State.    

Previously, redesigned Calculus II was delivered as a collection of independent single sections 

with little to no governance beyond a common text and a suggestion of content coverage (the 

traditional list above).  We replaced this with a master course specifying all homework, quizzes, 

exams, daily lesson order and content, and overall grade weighting.  The master course was 

copied to each individual section, with the understanding that no instructor would be coerced by 

the department.  Voluntary opt-in meant adopting the master course structure.  We have had 

approximately 95% opt-in since the launch of the project.    

Opt-in does not require any particular pedagogical approach.  However, each homework set in 

the master course is designed to be best delivered in an active learning style, with most class time 

devoted to students progressing through carefully scaffolded exercises with guidance from the 

instructor and a learning assistant.  All instructors who have opted in have also adopted some 

form of active learning.   

The group of instructors in any given semester works as a team to deliver the course – 

collaborating on quizzes and exams, meeting regularly to discuss classroom practice and course 

delivery logistics.  They are supported by a team of more senior instructors dedicated to the 

continued operation of the restructured Calculus I and II courses.  The result is a strong 

community of practice.  

Consensus and buy-in was developed over the 2015-16 scale up period by forming a Faculty 

Learning Community (FLC) that met for a full year (e.g. see Cox and Richlin, 2004). In the fall 

term of 2015, instructors debated and agreed upon lesson objectives and content. During the 

spring of 2016, all FLC members who had been assigned Calculus II taught their sections using 

the agreed upon curriculum and content. Weekly meetings during the spring semester served to 

further build out content, to discuss real-time issues in course delivery, and to agree on common 

weekly quizzes and midterm exams. These weekly meetings formed the basis for the ongoing 

community of practice that has continued the project.  The result is a closely coordinated, multi-

section Calculus II course with common content, assessments, and exams.  

2.2 Methods  

The toolkit developed to assess the effects of Calculus I transformation includes descriptive 

statistics: 

 Time series of aggregate pass rate across all of Calculus I. (Bullock, et. al. 2015, 2016) 

 Before/After comparisons of pass rates for individual instructors who taught both the old 

Calculus I and the reformed Calculus I. (Bullock, et. al. 2015) 

 Pass rates in courses subsequent to Calculus I, with comparisons between students who 

reached the subsequent course via old Calculus I, reformed Calculus I, or by transfer 

credit. (Bullock, et. al. 2017) 
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 Retention of students, both in the sense of “retained at Boise State University” and 

“retained in STEM”, across the year in which they first encounter Calculus I, again with 

comparisons between old and reformed Calculus I. Effects on retention were studied for 

subpopulations of female, Pell eligible, and underrepresented minority students. Bullock, 

et. al. 2017). 

Features of the course transformation process allowed us to identify a treatment group (those 

who took reformed Calculus I) and a control group (those who took the old Calculus I). The two 

groups co-existed across a time span that extended to either side of the year of course 

development and implementation. Before implementation, some students took the reformed 

curriculum as it was in preliminary development and testing, and after implementation, some 

instructors opted out of the project. The result is a natural experiment with two roughly equal 

sized study populations taking different versions of Calculus I in the same time frame. We used 

this opportunity to conduct the following statistically rigorous assessments:   

 Comparison of Calculus I pass rates for treatment vs. control. Significance tests were 

applied to the research question: “Does treatment improve Calculus I pass rate?” Control 

variables were used to test whether the two groups had different levels of academic 

preparation or ability. (Bullock, et. al. 2016) 

 Comparison of Calculus I average GPA for treatment vs. control. Significance tests were 

applied to the research question: “Does treatment improve Calculus I GPA?” Control 

variables were used to test whether the two groups had different levels of academic 

preparation or ability. (Bullock, et. al. 2016) 

 Comparison of Calculus II pass rates and GPA for treatment vs. control. Note that 

Calculus II in this context is not the treatment course. It is a testing ground for the results 

of reforming Calculus I. Significance tests were applied to the research question: “Does 

the treatment (reformed Calculus I) have any detrimental effects on Calculus II?” Control 

variables were used to test whether the two groups had different levels of academic 

preparation or ability. (Bullock, et. al. 2016) 

 Comparison of some (not all) of the various retention metrics. Significance tests were 

applied to the research question: “Does treatment improve retention?” Control variables 

were not used, so this is less rigorous. The significance testing here is perhaps best 

thought of as a refinement of the descriptive statistics on retention. (Bullock, et. al. 2017) 

In the subsequent sections of this paper we will, for each assessment instrument or group above, 

present the results of applying the same tools or tests to measure the effects of transforming 

Calculus II. In each case, we will compare or contrast the findings with what we learned about 

Calculus I across the last three years.   

3.0 Results – Descriptive Statistics 

3.1 Aggregate Pass Rate 

Figure 1 shows the pass rate for all of Calculus II in each non-summer term for the last decade 

(line graph). The bars graph shows total enrollment. Color coding indicates students in old 

Calculus II (blue) versus new Calculus II (orange). The implementation term is visible in the 

shift from mostly blue to mostly orange bars. Orange before implementation is due to small 

development and testing sections. Blue after implementation is due to instructors opting out of 
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the coordinated course design. Despite some volatility and a potential trend leading up to 

transition, there is a fairly clear jump in pass rate.  

 

Figure 1: Calculus II enrollment and pass rate 

For comparison, Figure 2 shows the corresponding decade of Calculus I. 

 

Figure 2: Calculus I enrollment and pass rate 
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In both graphs we have chosen to present one decade of data, with the cut off exactly 2 years 

after the course was transformed.  Both graphs show that after transition, the bulk of calculus 

was taught using the reformed curriculum, and pass rates increased.  

 

3.2 Before and After Pass Rate 

In the Calculus I transition, fortuitously, we had a group of six instructors who taught Calculus I 

both before and after the reform, allowing us to compare pass rates while keeping instructors 

constant. In the Calculus II transition we, coincidentally, ended up with six instructors who had 

taught both the old and new Calculus II. Figures 3 and 4 show the individual pass rates, per 

instructor, for both Calculus I (Bullock, et. al., 2015) and Calculus II. 

 

Figure 4: Calculus II pass rate by instructor 

For both Calculus I and II, five of the six instructors saw jumps in pass rate. However, this data 

is highly volatile, with small population sizes. The rightmost bar aggregates the pass rate across 

the six instructors, giving a decent comparison of before/after pass rates while holding the 

instructor corps constant.    

3.3 Subsequent Course Work 

As an assessment of the efficacy of Calculus II, we monitor pass rates in courses that carry 

Calculus II as a prerequisite or for which Calculus II knowledge could be meaningful even if not 

a prerequisite. We consider all students who took and passed Calculus II between Spring 2015 

and Summer 2017. This range is chosen to include a full calendar year before the implementation 

term (Spring 2016) for transforming Calculus II, and to end at the last point when a student could 

pass Calculus II and subsequently attempt another course. In this time frame, there is one data 

record for each pair of events of the form: 

(Student Passed Calculus II, Same student subsequently attempted a target course)  

A student can appear more than once in the data set, if they have attempted more than one of the 

subsequent target courses. All students attempting any given target course are sorted by whether 

they passed new Calculus II or old Calculus II. We compute the pass rate for each group in each 

Figure 3: Calculus I pass rate by instructor 
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course. For comparison, we also include the pass rate for students who transferred the 

prerequisite. These students have no record of a Boise State Calculus II course prior to the target 

course, so they are not affected by our course redesign.  Results are shown in Table 1.   

Table 1: Post Calculus II pass rates -- individual courses 

Post Calculus II Pass Rates -- Individual Courses 

Course Old Calculus II New Calculus II Transfer Effect Size p-value N 

Calculus III 84.2% 84.2% 80.6% 0.0% 0.988 811 

Circuits I 80.0% 81.3% 71.4% 1.3% 0.876 98 

Circuits II 65.0% 83.9% 100.0% 18.9% 0.133 51 

Diff Eq 80.9% 76.0% 70.7% -4.9% 0.154 582 

Dynamics 84.0% 77.7% 84.2% -6.3% 0.240 212 

E and M 72.7% 75.0% 100.0% 2.3% 0.901 23 

Fluids 84.4% 89.5% 61.9% 5.1% 0.403 121 

Heat 92.9% 88.2% 50.0% -4.6% 0.616 45 

Mech Mat 81.2% 77.2% 87.0% -4.0% 0.532 164 

Phys I 89.0% 89.7% 88.7% 0.8% 0.850 235 

Phys II 88.7% 91.5% 81.3% 2.8% 0.278 519 

Statics 75.8% 78.9% 64.4% 3.1% 0.477 360 

ALL COURSES 83.3% 82.8% 77.9% -0.5% 0.728 3221 

 

For those who prefer a graphical description, see Figure 5. 

 

 

Figure 5: Post Calculus II pass rates 
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In Table 1, effect size is the difference between the pass rates of students originating in new 

Calculus II compared to old Calculus II. Positive effects mean that the new Calculus II students 

perform better. N and p-value are included to help judge significance. However, since none of 

the effects are significant, this is simply additional descriptive statistics. For example, if there is a 

negative effect with a small p-value, even if not meeting the 0.05 significance threshold, this is a 

potential cause for concern. Details on the computational methods are available in Bullock, et. al. 

(2017).   

The purpose of this computation is to give a sense of whether the changes to curriculum and 

content in the new Calculus are creating any problems in downstream courses. Since the content 

changes have made Calculus II more accessible, there is some possibility that subsequent 

coursework would expose students’ weaknesses. Since we see a scattering of positive and 

negative effects, but none statistically significant, this descriptive report suggests that there are 

no ill effects.  

This tool allows for easy aggregation of post Calculus II courses by discipline, which is of 

interest to specific course owners. It also includes demographic slicers. The discipline aggregates 

are Math, Physics, and Engineering (Table 2). 

 

Table 2: Post Calculus II pass rates -- by discipline 

Post Calculus II Pass Rates – By Discipline 

Discipline Old Calculus II New Calculus II Transfer Effect Size p-value N 

Engineering 79.9% 80.3% 73.8% 0.1% 0.952 1189 

Math 82.9% 80.6% 75.3% -2.7% 0.195 1530 

Physics 88.8% 90.9% 85.7% 2.0% 0.373 866 

 

The subpopulations of most interest to us are women, underrepresented minorities (URM), and 

Pell eligible students. For this, we aggregate post Calculus II courses (Table 3).  

Table 3: Post Calculus II pass rates -- by demographic 

Post Calculus II Pass Rates -- By Demographic 

Demographic Old Calculus II New Calculus II Transfer Effect Size p-value N 

URM 79.8% 80.4% 66.7% 0.6% 0.879 410 

Female 88.7% 88.1% 84.7% -0.6% 0.803 699 

Pell 81.3% 78.3% 80.5% -3.0% 0.254 915 

 

 

As always, these are descriptive statistics, with N and p-value included to provide suggestions of 

which numbers might be of most interest.   
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Figure 6: Post Calculus II pass rates - by discipline and by demographic                     

4.0 Results – Rigorous Hypothesis Tests 

4.1 Outcomes in the Transformed Course 

Our first use of statistical testing of hypotheses to address a research question in the Calculus I 

project was a comparison of outcomes in Calculus I for treatment (new Calculus I) vs control 

(old Calculus I). Details of the methodology are in Bullock, et. al. (2016), where we found large 

and significant gains in pass rate and GPA in Calculus I. For this paper, we applied the same 

methodology to treatment and control populations of Calculus II students. The study population 

was all students in Calculus II from Spring 2013 through Fall 2017, a four-year span straddling 

the implementation term, Spring 2016. There were 2845 data records, split into 1307 treated 

students and 1538 in the control group. The research question was:  

“Does treatment (reformed Calculus II) improve results in Calculus II?”   

We tested two null hypotheses. Regarding pass rates: 

H0: Students in treatment and control are equally likely to pass Calculus II. 

Regarding grades: 

H0: Treatment and control groups will have the same average grades in Calculus II.  

The experimental variables we measured were Pass Rate and Average Grade Points (GPA) for 

each group in Calculus II. We also sought to control for the possibility that the treatment and 

control groups had different levels of academic preparation or aptitude. For each group, we 

measured four additional variables: High School GPA, College GPA (in the term they took 

Calculus II), Admission Index (computed by our admissions office from HS GPA and composite 

SAT and/or ACT scores), and ACT Math score, using concordances if a student has an SAT 

Math score instead. The results are shown in Table 4. 
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Table 4: Calculus II pass rate and GPA, treatment vs. control 

Calculus II Pass Rate and GPA:  Treatment vs. Control 

Variable Variable Type Control Treatment Effect Size p-value 

Calculus II Pass Rate Study Variable 63.7% 77.4% 13.6% 0.0000 

Calculus II GPA Study Variable 1.90 2.38 0.48 0.0000 

College GPA Control Variable 3.01 3.09 0.08 0.0002 

Admission Index Control Variable 62.42 63.98 1.56 0.0708 

High School GPA Control Variable 3.35 3.40 0.06 0.0061 

Concordant ACT Math Control Variable 25.14 25.59 0.45 0.0160 

It is immediately evident that there are massive gains in pass rate (13.6%) and GPA (an increase 

of half a letter grade) for the treatment group. However, it is also clear that the treatment group in 

this natural experiment is stronger in academic preparation. We have used this “academic 

preparation control” process in all of the previous Calculus I papers – and in each case, we found 

that treatment and control groups were not academically different, so we were satisfied with this 

form of control. However, the results in Calculus II make it clear that better tools are needed – 

either a multivariable regression to determine what portion of the gains are due to treatment 

instead of incoming academic ability, or perhaps non-parametric methods. Unfortunately, this 

will have to wait for a subsequent study. For now, we can report enormous gains with statistical 

significance on the study variables. These are more than twice as large as the gains shown in 

Calculus I at the equivalent stage of that project. If even half of the Calculus II gains are due to 

the treatment, this is still an excellent outcome.   

4.2 Outcomes in Subsequent Courses 

Section 3.3 provided descriptive statistics on pass rates in courses subsequent to the transformed 

Calculus II course. We can also use the tool to address the research question: 

“Does treatment (reformed Calculus II) have any negative effect on subsequent courses?” 

 

Essentially, this is a test of “do no harm.” Early in the Calculus I project, there was some fear 

that pass rate gains in Calculus I might be coming at the expense of success in subsequent 

courses, so we built and applied this tool as a rigorous test to check if there was any harm. We 

found none for the Calculus I reform. Similarly, for Calculus II, we test the null hypothesis: 

 

H0: Treatment and control groups (in Calculus II) are equally likely to pass subsequent courses.   

Here, we hope to find no evidence that causes us to reject the null hypothesis. We set up a 

natural experiment in Calculus II following exactly the protocol we used for Calculus I (Bullock, 

et. al. 2016). In that paper, we tested only the pass rate in one critical course subsequent to 

Calculus I – namely Calculus II. However, with Calculus II as the treatment focus, there is less 

clarity as to what subsequent course is the most important test of treatment effects. We chose 

two: Calculus III and Differential Equations. Both courses are part of the standard STEM track; 

either course may be taken immediately after Calculus II. Which comes first is typically a matter 

of advising within various STEM disciplines. There are additional technical details of how we 

restricted the study population to most effectively test our hypothesis, which we will not restate 

here (see Bullock, et. al. 2016). Tables 5 and 6 present the results for the two subsequent courses. 
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Table 5: Post Calculus II results in Calculus III 

Post Calculus II results in Calculus III 

Variable Variable Type Control Treatment Effect Size p-value 

Calculus III Pass Rate Study Variable 84.3% 83.8% -0.4% 0.884 

Calculus IIII GPA Study Variable 2.64 2.59 -0.05 0.620 

College GPA Control Variable 3.19 3.19 0.00 0.937 

Admission Index Control Variable 66.95 67.34 0.39 0.802 

High School GPA Control Variable 3.48 3.47 -0.01 0.781 

Concordant ACT Math Control Variable 25.45 25.89 0.43 0.236 

In Calculus III, both study variables show a small negative effect of treatment, but very large p-

values mean this is insignificant, so the null hypothesis of “did no harm” is retained. This is what 

we found when we studied the effect of Calculus I on subsequent Calculus II. Also, similarly, the 

treatment and control groups display no significant differences in academic ability or 

preparation.   

The picture for Differential Equations, however, is less appealing. 

Table 6: Post Calculus II results in Differential Equations 

Post Calculus II results in Differential Equations 

Variable Variable Type Control Treatment Effect Size p-value 

Diff Eq Pass Rate Study Variable 80.3% 70.4% -9.9% 0.068 

Diff Eq GPA Study Variable 2.46 2.16 -0.30 0.078 

College GPA Control Variable 3.06 3.11 0.06 0.378 

Admission Index Control Variable 63.27 64.00 0.73 0.796 

High School GPA Control Variable 3.38 3.41 0.03 0.638 

Concordant ACT Math Control Variable 24.67 26.53 1.86 0.008 

Here, we see very large negative effects on the treatment population. While the p-value is just 

above the threshold at which one would typically reject the null hypothesis, it would not be safe 

to comfortably conclude that the treatment of reforming Calculus II has done no harm in 

Differential Equations. Also, since there is evidence in the control variables that indicates the 

treatment group was academically stronger than the control group, it puts the negative treatment 

effects in an even worse light. Again, it is clear that a more robust statistical model is necessary. 

But this data is sufficient to require immediate engagement with the Calculus II project team and 

possible intervention to ameliorate potential trouble in Differential Equations. It is unclear what 

causal mechanism (if any) may be at work.  

4.3 Retention  

Here again we developed a natural experiment as the Calculus I project evolved (Bullock, et. al. 

2017). We used the experiment to study the effect of reforming Calculus I on the retention of 

students in the year that they encountered Calculus I. For this paper, we apply an identical 

protocol to Calculus II students, addressing the research question: 
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“What effect does treatment (reformed Calculus II) have on retention of students in the 

year that they encounter Calculus II?” 

There are actually two research questions: one in which retention is “retained at the university,” 

regardless of major, and one in which retention is “retained in STEM,” and applies only to 

students who were STEM majors in the year they encountered Calculus II1. We answer each 

question for the general study population and then again for demographics of women, 

underrepresented minorities, and Pell eligible students. In all cases, we test the null hypothesis: 

H0: Students in treatment and control are equally likely to be retained. 

We do not, however, include the additional variables for academic preparation and ability.  

Details on the protocol for forming the 

study population, technical definitions 

of variables, and other elements of the 

experimental design can be found in 

Bullock, et. al. (2017). Figure 7 

presents a snapshot of the size of the 

study population (2340 records), 

distributed across 4 academic years 

and broken out as treatment (new 

Calculus II) or control (old Calculus 

II). 

 

 

Figure 7: Study population – post Calculus II retention                     

4.3.1 Retained at the University  

Treatment delivers a bit more than four percentage points of additional retention at the university 

in the year that students encounter Calculus II (Table 7 and Figure 8). The result is statistically 

significant.  

Table 7: Post Calculus II retention rates 

Post Calculus II Retention Rates 

Demographic Control Treatment Effect Size p-value N 

ALL 81.0% 85.2% 4.2% 0.008 2340 

Female 83.1% 88.2% 5.1% 0.104 496 

URM 81.5% 85.3% 3.7% 0.372 324 

Pell 82.6% 84.9% 2.3% 0.400 789 

When sliced by demographics, we see that there are slightly larger retention gains for women. 

URM and Pell eligible students also gain, but not as much as the full study population. None of 

                                                           
1 Our definitions of the terms “retention” and “retention rate” differ from the definitions used in Boise State 

University’s official reporting offices. Details available in Bullock, et. al. (2017). 
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the demographically specific gains are statistically significant, since these are much smaller 

populations compared to the full study population.   

 

Figure 8: Retention rate gains, Calculus II 

4.3.2 Retained in STEM 

We restrict the study population to students who were STEM majors in the year they 

encountered Calculus II. There are now three possible outcomes:  Retained in STEM, switched 

to non-STEM, and left school. Treatment delivers a similar gain in STEM-to-STEM retention. 

Table 8: Post Calculus II STEM Retention 

Post Calculus II STEM Retention  

Result Control Treatment Effect Size p-value N 

STEM-to-STEM 75.5% 79.8% 4.3% 0.040 1659 

STEM-to-Non 5.9% 6.0% 0.1%   128 

Dropped Out 18.5% 14.2% -4.3%   363 

This is very much like what we saw for Calculus I (Bullock, et. al. 2017) in two ways. One is 

that the size of the gain is what one would expect as a simple consequence of the pass rate gains, 

and two is that the entire gain in STEM-to-STEM retention is caused by preventing dropouts. 

Both observations suggest that all of this is directly attributable to pass rate.  

When we drill down to demographics (Table 9) we see similar results, albeit none that are 

statistically significant. There is one notable difference involving underrepresented minority 

students.  

For female students, treatment may confer a gain in STEM retention that is, again, entirely the 

result of preventing dropouts. The STEM-to-STEM retention gain for women is not as large as 

the gain in retention at the university, which is a stark contrast to the result from transforming 

Calculus I (Bullock, et. al. 2017). In that paper we found a much larger benefit to women 

retained in STEM as compared to women retained at the university. Also, note that the starting 



Page 14 of 15 

point for female retention in STEM, about 75%, is much lower than the starting point for female 

retention in college 

Table 9: STEM retention by Demographic 

STEM Retention by Demographic 

Demographic Result Control Treatment Effect Size p-value N 

Female 

STEM-to-STEM 74.8% 78.5% 3.7% 0.435 328 

STEM-to-Non 8.9% 9.3% 0.4%   39 

Dropped Out 16.3% 12.2% -4.1%   63 

URM 

STEM-to-STEM 77.2% 76.9% -0.3% 0.953 225 

STEM-to-Non 5.3% 9.9% 4.7%   21 

Dropped Out 17.5% 13.2% -4.3%   46 

Pell Eligible 

STEM-to-STEM 76.6% 79.5% 3.0% 0.403 576 

STEM-to-Non 6.1% 6.1% 0.0%   45 

Dropped Out 17.4% 14.4% -3.0%   121 

 

For Pell eligible students, there is the same story: small gains that are due to preventing dropouts.  

There is an oddity for URM. Here, the treatment effect on STEM retention is negative. 

Reforming Calculus II could have cost some URM retention in STEM. As with other groups, we 

have obtained a nice reduction in the dropout rate, but here all of the non-dropouts seem to have 

departed for non-STEM fields.  

While informative, none of the demographically specific results are statistically significant. 

4.3.3 STEM Retention Gaps 

The previous subsection details STEM retention rates for demographic subgroups, which can be 

compared to STEM retention for the full study population. 

Table 10: STEM retention gaps 

Where retention gaps are concerned, what is more 

appropriate is a head-to-head comparison. These are 

displayed for treatment and control in Table 10. 

Here, we show only STEM-to-STEM retention. It is 

evident that the treatment seems to confer STEM 

retention gains for all groups. However, because the 

gains for men are highest, the pre-existing gaps for 

women, underrepresented minorities, and Pell 

eligible students widened after treatment. 

 

 

 

STEM Retention Gaps 

Demographic Control Treatment 

Female 74.8% 78.5% 

Male 75.7% 80.2% 

Gender Gap 0.9% 1.7% 

URM 77.2% 76.9% 

non-URM 77.8% 82.0% 

URM Gap 0.6% 5.1% 

Pell 76.6% 79.5% 

non-Pell 78.5% 82.0% 

Pell Gap 2.0% 2.5% 
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5.0 Summary 

The transformation of Calculus II has achieved very large gains in Calculus II pass rates and 

grades, which translate into reasonably large gains in retention, both at the overall university 

level and specifically for STEM majors. All of these results, when studied via natural 

experiment, are statistically significant. None are restricted to a priori advantaged demographic 

groups. The gains in pass rate, grades, and retention are similar to those achieved by the earlier 

transformation of Calculus I at Boise State University. The Calculus II gains are even larger.   

Descriptive statistics on performance in courses beyond Calculus II suggest that there is no 

negative effect from altering the Calculus II content and curriculum. However, when statistical 

tools are carefully applied to test this hypothesis on immediately subsequent math courses, there 

is one important and actionable exception; although Calculus II transformation seems to have no 

effect on Calculus III, there is a sizable and significant negative impact on Differential 

Equations. It is, at least, a positive outcome of this study to have caught this effect and to have 

data to support and guide an intervention to address it.    

Retention effects are smaller and less statistically robust than the pass rate gains in Calculus II. 

They also did not display STEM specific impacts that were as profound as those observed after 

Calculus I transformation. However, this does not mean that the Calculus II reform is failing 

female, URM, or Pell eligible students. It simply means that issues with retention will need to be 

kept in view.   

6.0 Acknowledgments 

The authors gratefully acknowledge the support of the National Science Foundation through 

Grant No DUE-1347830, the ongoing support of the Dean of Arts & Sciences and the Office of 

the Provost at Boise State University, and the reviewers for suggestions that improved the paper.  

References 

Budny, D., LeBold, W., Bjedov, G. (1998). Assessment of the Impact of Freshmen Engineering Courses. 

Journal of Engineering Education, 87(4) 405-411. 

Bullock, D., Callahan, J., Shadle, S. E. (2015). Coherent Calculus Course Design: Creating Faculty Buy-

in for Student Success. Proceedings of the 2015 ASEE Annual Conference & Exposition, Seattle, WA.  

Bullock, D., Johnson, K. E., Callahan, J. (2016). Longitudinal Success of Calculus I Reform. Proceedings 

of the 2016 ASEE Annual Conference & Exposition, New Orleans, LA.  

Bullock, D., Callahan, J., Cullers, J. B. S. (2017). Calculus Reform - Increasing STEM Retention and 

Post-Requisite Course Success While Closing the Retention Gap for Women and Underrepresented 

Minority Students. Proceedings of the 2017 ASEE Annual Conference & Exposition, Columbus, OH.  

Callahan, J., Belcheir, M. (2017). Testing our Assumptions: The Role of First Course Grade 

and Course Level in Math and English in Predicting Retention. Journal for College Student Retention, 

19(1). 

Cox, M.D., Richlin, L. (Eds.) (2004). New directions for teaching and learning, No. 97. Building faculty 

learning communities. San Francisco, CA, Jossey-Bass. 


	2002-Kauffman Bracket Skein Algebra 
	2003-Yang Mills Measure Kauffman Bracket Skein
	2005-Kauffman Bracket Skein Twist Knot Exterior
	2008-Enhancing Precalculus Curricula
	2009-Implementation Online Mathematics Placement 
	2009-Improving Students Learning Precalculus
	2011-Idaho Science Talent Expansion Program 
	2012-Both Sides Equation 
	2012-Using Online Assessment Practice
	2015-Coherent Calculus Course Design
	2016-Instructional Faculty Development Student Success
	2016-Longitudinal Success Calculus Reform
	2016-Support Model Transfer Students STEM Scholarship
	2017-Assessing STEM Landscape Climate Survey Evidence Based Practices Adoption Scale
	2017-Calculus Reform Increasing Retention Women Underrepresented Minority Students
	2017-Enhancing STEM Majors College Trigonometry Learning Mobile Apps
	2018-Crux Calculus II

