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THE YANG-MILLS MEASURE IN THE KAUFFMAN BRACKET
SKEIN MODULE

DOUG BULLOCK, CHARLES FROHMAN, AND JOANNA KANIA-BARTOSZYŃSKA

Abstract. For each closed, orientable surface Σg, we construct a local, diffeomor-
phism invariant trace on the Kauffman bracket skein module Kt(Σg × I). The trace
is defined when |t| is neither 0 nor 1, and at certain roots of unity. At t = −1, the
trace is integration against the symplectic measure on the SU(2) character variety
of the fundamental group of Σg.

1. Introduction

Since the introduction of quantum invariants of 3-manifolds [20, 25] the fact that they
are only defined at roots of unity has been an obstruction to analyzing their proper-
ties. One approach has been to study the perturbative theory of quantum invariants
[17]. However, there is ample evidence quantum invariants of three manifolds exist
as holomorphic functions on the unit disk, that diverge everywhere on the unit circle
but at roots of unity [14]. This paper takes a step towards seeing that this holds in
general. The Yang-Mills measure is the path integral on a topological quantization [3]
of the SU(2)-characters of the fundamental group of a closed surface. The measure
displays the same convergence properties as are expected of quantum invariants of
3-manifolds.

The Yang-Mills measure in the Kauffman bracket skein algebra of a cylinder over a
closed surface Σg is a local, diffeomorphism invariant trace. It quantizes the sym-
plectic measure on the space M(Σg) of conjugacy classes of representations of the
fundamental group of Σg into SU(2). The definition of the symplectic structure and
formulas for its computation are in [10, 11]. The volume of M(Σg) was computed by
Witten in [26] in two ways: via the equivalence of two computations in quantum field
theory, and by noting that the symplectic measure is equal to the measure coming
from Reidemeister torsion. In Witten’s setting the Yang-Mills measure is a path inte-
gral in a lattice model of field theory that depends on area. Forman [7] gave a direct
proof that Witten’s measure converges to the symplectic measure as the area goes to
zero.

Alekseev, Grosse and Schomerus [1] conceived of a method of constructing lattice
gauge field theory based on a quantum group. This idea was further developed by
Buffenoir and Roche [6] who gave a construction of the algebra, its Wilson loops and
a trace called the Yang-Mills measure that were completely analogous to Witten’s
construction. Their theory is topological when the area is set to zero.
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The method of constructing the algebras in [1, 6] is combinatorial and based on
generators and relations. We gave a new construction of lattice gauge field theory in
[4] that is “coordinate free”. The connections form a co-algebra and the product on
the gauge fields is a convolution with respect to the co-multiplication of connections.
This allows the structure of the observables to be elucidated. We found working
over formal power series, basing the theory on quantum sl2, that the observables are
the Kauffman bracket skein algebra of a cylinder over a regular neighborhood of the
1-skeleton. In [5] we recover the same result working over the complex numbers.

These considerations lead one to expect that the Yang-Mills measure exists as a trace
on the Kauffman bracket skein algebra of a closed surface. In this paper we affirm this
fact, with the only reservation that if the deformation parameter t is a generic point
on the unit circle, then the measure does not converge. However, at roots of unity
the trace exists and is well known. Furthermore, at t = −1 the Yang-Mills measure
is the symplectic measure on M(Σg).

This paper is organized as follows. Section 2 recalls definitions, associated formulas
and the algebra structure of the Kauffman bracket skein module of a cylinder over
a surface. In section 3 the Yang-Mills measure is defined for compact surfaces with
boundary, and is proved to be a trace. In section 4, working with the parameter t such
that |t| 6= 1, we obtain estimates for the absolute value of the tetrahedral coefficients
and use these to show that the Yang-Mills measure can be defined for closed surfaces.
In section 5 we define and investigate the measure when t is a root of unity.

2. Preliminaries

Let M be an orientable 3-manifold. A framed link in M is an embedding of a disjoint
union of annuli into M . Framed links are depicted by showing the core of an annulus
lying parallel to the plane of the paper (i.e. with blackboard framing). Two framed
links in M are equivalent if there is an isotopy of M taking one to the other. Let
L denote the set of equivalence classes of framed links in M , including the empty
link. Fix a complex number t 6= 0. Consider the vector space CL with basis L.
Define S(M) to be the smallest subspace of CL containing all expressions of the form

− t − t−1 and ©+ t2+ t−2, where the framed links in each expression are
identical outside balls pictured in the diagrams. The Kauffman bracket skein module
Kt(M) is the quotient

CL/S(M).

Let F be a compact orientable surface and let I = [0, 1]. There is an algebra structure
on Kt(F × I) that comes from laying one link over the other. Suppose that α, β ∈
Kt(F × I) are skeins represented by links Lα and Lβ . After isotopic deformations, to
“raise” the first link and “lower” the second, Lα ⊂ F × (1

2
, 1] and Lβ ⊂ F × [0, 1

2
).

The skein α ∗ β is represented by Lα ∪ Lβ. This product extends to a product on
Kt(F × I). We denote the resulting algebra by Kt(F ) to emphasize that it comes
from viewing the underlying three manifold as a cylinder over F .
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The notation and the formulas in this paper are taken from [13]. However, the variable
t replaces A, and we use quantum integers

[n] =
t2n − t−2n

t2 − t−2
.

When t = ±1, [n] = n. Note that ∆n from [13] is equal to (−1)n[n+ 1].

There is a standard convention for modeling a skein in Kt(M) on a framed trivalent
graph Γ ⊂ M . When Γ is represented by a diagram we assume blackboard framing.
An admissible coloring of Γ is an assignment of a nonnegative integer to each edge
so that the colors at trivalent vertices form admissible triples (defined below). The
corresponding skein in Kt(M) is obtained by replacing each edge labeled with the
letter m by the m-th Jones–Wenzl idempotent (see [24], or [15], p.136), and replacing
trivalent vertices with Kauffman triads (see [15, Fig. 14.7]).

Recall the fusion identity:

a b

=
∑

c

(−1)c
[c+ 1]

θ(a, b, c)
c

a b

a b

where the sum is over all c so that the triples (a, b, c) are admissible, i.e. a+ b+ c is
even, a ≤ b + c, b ≤ a + c, and c ≤ a + b. Value of θ(a, b, c) is given by equation (4)
below. The fusion relation is satisfied in Kt(M) unless t is a root of unity other than
±1.

3. The Yang-Mills Measure in a Handlebody

Throughout this section we assume that t is not a root of unity. The first result is
well known and comes from Przytycki’s [18] construction of examples of torsion in
skein modules.

Lemma 1 (The Sphere Lemma). Let sc be a skein represented by coloring a triva-

lent framed graph in the manifold M . Suppose further that there is a sphere embedded

in M which intersects the underlying graph transversely in a single point in the inte-

rior of an edge, and the color of that edge is not zero. Then sc = 0.

Proof. Using the “light bulb trick” isotope the framed graph sc so that it is the
same graph, but the framing on the edge intersecting the sphere has been changed
by adding two kinks. Using the formula for eliminating a kink, notice that sc is a
nontrivial complex multiple of itself. Ergo, sc represents zero in Kt(M).

Consider now Kt(#gS
1 × S2), the Kauffman bracket skein module of the connected

sum of g copies of S1 × S2.

Proposition 1. The skein module Kt(#gS
1 × S2) is canonically isomorphic to C.

The isomorphism is given by writing each skein as a complex multiple of the empty

skein.
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Proof. This follows easily from theorems of Hoste and Przytycki [12, 18, 19]. In [12]
the Kauffman bracket skein module of S1 × S2 is computed over Z[t, t−1]. This along
with the results in [19] on the Kauffman bracket skein module of a connected sum
over rational functions in t, combined with the universal coefficient theorem stated in
[18], proves the desired result.

We outline the actual isomorphism with the complex numbers. Choose a system of
spheres in #gS

1×S2 that cut it down to a punctured ball. Given a skein in #gS
1×S2,

represent it as a linear combination of colored, framed, trivalent graphs intersecting
the spheres transversely in interior of edges, and so that each graph intersects any
sphere at most once. This is done by fusing multiple edges passing through the same
sphere. By the sphere lemma, we can assume the graphs miss the spheres. Now take
the Kauffman bracket of the skein in the punctured ball to write it as a complex
multiple of the empty skein.

Given a handlebody H of genus g its double is #gS
1×S2. There is a linear functional

YM : Kt(H) → C computed by taking the inclusion of H into #gS
1 × S2 followed

by taking the “ Kauffman bracket” as above. Let F be a compact, oriented surface
with boundary. Since F × I is a handlebody the linear functional

YM : Kt(F ) → C,

is defined. We call this the Yang-Mills measure.

Choose a trivalent spine of F . The admissible colorings of that spine form a basis for
Kt(F ). The skein modules of the disk and annulus are exceptions; the first is spanned
by the empty skein and the latter is described in Section 4. In terms of this basis the
Yang-Mills measure is just the coefficient of the skein coming from labeling all the
edges of the spine with 0.

Proposition 2. The Yang-Mills measure is a trace, that is

YM(α ∗ β) = YM(β ∗ α).
Furthermore, the trace is invariant under the action of the diffeomorphisms of F × I
on Kt(F ).

Proof. Let L be the link ∂F × {1/2}. The result of removing L from the double of
F × I is homeomorphic to the Cartesian product of the interior of F with a circle.
Given any skein in F × I we can represent it by a linear combination of framed links
that miss L. Hence, the Yang-Mills measure factors through the skein module of
F × S1. In F × S1 the skeins α ∗ β and β ∗ α are the same.

The group of diffeomorphisms of the handlebody F × I acts on Kt(F ) in the obvious
way. If f : F × I → F × I is a diffeomorphism then it can be extended to Df :
#gS

1×S2 → #gS
1×S2. Since the image of the empty skein under a diffeomorphism is

the empty skein, the action ofDf onKt(#gS
1×S2) is trivial. Therefore, YM(f(α)) =

YM(α).

The final commonly used property of the Yang-Mills measure is that it is local. Sup-
pose that k is a proper arc in F . Cut F along k to get a surface F ′. It is evident
that if we write a skein α as a linear combination of admissibly colored graphs, each
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one intersecting k transversely in at most a single point, then we can throw out any
graph such that the edge intersecting k carries a nonzero label. This yields a skein in
F ′, denoted by αk. Then YM(α) = YM(αk).

4. The Yang-Mills measure on a closed surface

Throughout this section assume that |t| 6= 1. In fact, we only work with 0 < t < 1.
However, it is evident that the same proofs are valid when 1 < t since the formulas
are symmetric in t and t−1. Finally, the arguments extend to the case where t is not
real by replacing the estimates for t ∈ R by estimates of the absolute value of t ∈ C.

Recall the Kauffman bracket skein algebra of a cylinder over an annulus A. The
central core of the annulus can be seen as a link by giving it the blackboard framing.
Let si be the skein in the annulus which is the result of plugging the i-th Jones-Wenzl
idempotent into the core. The skein module Kt(A) is the vector space with basis {si},
where i runs from zero to infinity. The product with respect to this basis is given by

si ∗ sj =
i+j
∑

q≥|i−j|,by 2’s

sq.(1)

Use the Yang-Mills measure on Kt(A) to define a pairing:

〈α, β〉 = YM(α ∗ β).(2)

The si form an orthonormal basis with respect to (2). This pairing identifies the linear
dual ofKt(A) with series of the form

∑

i αisi, where the αi are complex numbers. Note
that:

〈
∞
∑

i=0

αisi,

n
∑

j=0

βjsj〉 =
n

∑

i=0

αiβi.

Let Σg,1 denote the compact orientable surface of genus g with one boundary compo-
nent. There is a pairing,

Kt(A)⊗Kt(Σg,1) → Kt(Σg,1)

given by representing the skein in Kt(Σg,1) by a linear combination of links disjoint
from some collar of the boundary, and plugging the skein in Kt(A) into the collar.
The Yang-Mills measure can then be applied to give a pairing,

Kt(A)⊗Kt(Σg,1) → C.(3)

This means there is a well defined map,

Y : Kt(Σg,1) → Kt(A)
∗.

Topologize Kt(A) by giving it the weak topology from Y . That is a sequence σn ∈
Kt(A) is Cauchy if for every skein α ∈ Kt(Σg,1), the sequence of complex numbers
Y (α)(σn) is Cauchy. A linear functional on Kt(Σg,1) that comes from an element of
this completion via the pairing (3) is called a distribution. It is interesting to note
that the weak topology from Y on Kt(A) depends on the genus of the surface.
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Figure 1. Tet and theta

If g > 1 there is a distribution onKt(Σg,1) which annihilates all “handle-slides” (Skeins
that are represented by the difference of two links such that one can be obtained from

the other by a slide across an imagined disk filling the boundary of Σg,1). This linear
functional descends to the skein module of the closed surface. Yang-Mills measure on a
closed surface is the result of evaluating this distribution followed by a normalization.

Let’s think about what a skein in Kt(A) would be like if it annihilated all handle-
slides. Begin by writing it as

∑

i αisi and solve for the αi. A simple computation
shows that if α0 is zero then all αi are zero. Normalize so that α0 = 1. Notice that
if our skein annihilates handle-slides then the skein s1 + [2]s0 must be annihilated.
Using the rules for multiplication (1) we see that the coefficient α1 is equal to −[2].
Continuing on this way we see that this skein has to be

∑

i

(−1)i[i+ 1]si,

which is of course not in Kt(A).

The first goal is to show that for g > 1 the sequence of partials sums
∑n

i=0(−1)i[i+1]si
is Cauchy in the weak topology from Y , and so defines a distribution.

The notation Tet

(

a b e
c d f

)

stands for the Kauffman bracket of the skein pictured in

Figure 1 on the left. The explicit formula is given in [13]. We also need the quantity
θ(a, b, c) which is the Kauffman bracket of the colored graph on the right in Figure 1.
In terms of quantum integers

θ(a, b, c) = (−1)
a+b+c

2

[a+b+c
2

+ 1]![a+b−c
2

]![ b+c−a
2

]![ c+a−b
2

]!

[a]![b]![c]!
.(4)

Another quantity, called a 6j symbol, is derived from the tetrahedral evaluation.
Specifically,

{

a b e
c d f

}

=

Tet

(

a b e
c d f

)

(−1)e[e+ 1]

θ(a, d, e)θ(c, b, e)
.(5)

The 6j symbols can be woven together to give a change of basis matrix for the White-
head move on graphs. As a consequence they satisfy an orthogonality equation:
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∑

e

{

a b e
c d f

}{

d a g
b c e

}

= δgf ,(6)

where δgf is the Kronecker delta.

The following proposition seems quite weak, but turns out to be a powerful tool for
gauging the convergence of series of Kauffman brackets.

Proposition 3.
∣

∣

∣

∣

Tet

(

a b e
c d f

)∣

∣

∣

∣

≤
√

θ(b, c, e)θ(a, d, e)θ(a, b, f)θ(c, d, f)

(−1)e+f [e+ 1][f + 1]

Proof. In order for all the triples at the vertices of a tetrahedron to be admissible ,
the parity of the sum of the entries in any two columns of

Tet

(

a b e
c d f

)

has to be the same. Use (5) to expand the formulas for the 6j symbols in the orthog-
onality relation (6), with g = f . The tetrahedral evaluations are equal and the signs
of the θ’s and the (−1)e+f cancel so that each term in the sum is positive. Hence
every term in the sum is less than 1. Fixing e and putting everything except for
the tetrahedral evaluations on the right hand side, and taking square roots yields the
desired result.

Corollary 1. There is a real valued function C(k1, k2, k3) so that

|Tet
(

i i i
k1 k2 k3

)

|
√

|θ(i, i, k1)θ(i, i, k2)θ(i, i, k3)|
(7)

is less than tiC(k1, k2, k3) whenever the graphs corresponding to the functions in the

formula are admissibly labeled.

Proof. Substitute into the inequality from Proposition 3 to get,
∣

∣

∣

∣

Tet

(

i i i
k1 k2 k3

)∣

∣

∣

∣

≤
√

θ(k1, k2, k3)θ(i, i, k1)θ(i, i, k2)θ(i, i, k3)

(−1)i+k3[k3 + 1][i+ 1]
.(8)

Shift
√

θ(i, i, k1)θ(i, i, k2)θ(i, i, k3) to the left hand side. Use the fact that 1
[i+1]

≤ t2i

to make the right hand side bigger. Finally, note that the remaining factor on the
right hand side is a function of k1, k2 and k3.

Theorem 1. The sequence
∑n

i=0(−1)i[i+ 1]si defines a distribution for g > 1. That
is, the limit

YMD(α) = lim
n→∞

YM(α ∗
n

∑

i=0

(−1)i[i+ 1]si)

exists and gives a well defined trace on Kt(Σg,1) when g > 1.
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Proof. Choose a trivalent spine for Σg,1 with 4g − 2 vertices and 6g − 3 edges. Basis
elements sc for Kt(Σg,1) correspond to labeling the edges admissibly with integers kj,
where j runs from 1 to 6g− 3. Let si denote the core of an annulus that runs parallel
to the boundary, labeled with the ith Jones-Wenzl idempotent. In order to compute
YM(sc ∗ si) place both skeins in the same diagram. Choose a system of arcs, each
intersecting this configuration transversely in three points, that isolate the vertices
from one another. The transverse points of intersection are labeled i, kj , i as you
traverse each arc. Fuse along these arcs, until the resulting graphs intersect each arc
in at most one point. Discard any term where the label on an edge intersecting an
arc is not zero. Given a vertex v, let (kv1, kv2, kv3) be the triple of colors appearing
there. The resulting answer is:

YM(sc ∗ si) =
6g−3
∏

j=1

1

θ(i, i, kj)

∏

v

Tet

(

i i i
kv1 kv2 kv3

)

.(9)

Each edge appears at exactly two vertices, so (9) can be written as a product of
4g − 2 factors like (7). By Corollary 1 the absolute value of YM(sc ∗ si) is less than
C(kj)t

i(4g−2), where C(kj) is a number depending only on the kj. The nth partial sum
for YMD(sc) is

n
∑

i=0

(−1)i[i+ 1]

6g−3
∏

j=1

1

θ(i, i, kj)

∏

v

Tet

(

i i i
kv1 kv2 kv3

)

.

Note that [i + 1] is less than (i + 1)t−2i. Hence the i-th summand is less than
(i + 1)(−1)iC(kj)t

i(4g−4). The ratio test implies that the sequence of partial sums
is absolutely convergent for 0 < t < 1.

Finally, YMD is a trace since the partial sums
∑n

i=0(−1)i[i+1]si can be seen as lying
in the center of Kt(Σg,1).

Theorem 2. YMD descends to give a well defined trace

YM : Kt(Σg) → C.

Proof. There is a homomorphism Kt(Σg,1) → Kt(Σg) induced by inclusion. The
surface Kt(Σg) is the result of adding a disk to the boundary of surface Kt(Σg,1). The
kernel of this homomorphism consists of all skeins that can be written as a linear
combination of handle-slides. The next step is to show that the linear functional
YMD annihilates all handle-slides. To this end we analyze the difference of the two
skeins in the annulus (relative to a pair of points in the boundary).

n
∑

i=0

(−1)i[i+ 1]













 i − i













(10)
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The analysis of the diagram (10) diagram is due to Lickorish, [15]. It is equal to:

(−1)n[n + 1]













n

n+1
−

n

n+1












.(11)

This diagram needs to be set in place. Using standard arguments as in [2] yields that
we only need to check handle-slides of the following form. Take a skein corresponding
to a colored spine, and separate one strand along an edge.

k

k − 1

k

Now slide the strand over the added disk, locally the diagram looks like:

k

k − 1

k

Multiplying each of the diagrams above by
∑n

i=0(−1)i[i+1]si, taking their difference,
and using the identity (10)=(11), we get a difference of two terms like the one below.
In the first one the label u = n and the label v = n+1, and in the second one u = n+1
and v = n.

k

k − 1

v

u u

k
u

Fusing to isolate the vertices of this diagram requires two more cross cuts than the
diagrams we have been working with up till now. We get the product of

(−1)n[n+ 1]
1

θ(u, k, u)θ(u, k − 1, v)
Tet

(

u u v
1 k − 1 k

)

Tet

(

u v u
1 k k − 1

)

(12)
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with the standard product,

6g−3
∏

j=1

1

θ(u, u, kj)

∏

v

Tet

(

u u u
kv1 kv2 kv3

)

.(13)

The product (13) is smaller than a global constant, depending on the kj , times tn(4g−2).
It remains to ascertain that the term (12) is not too large. Using the inequality from
Proposition 3 we get that, regardless of whether u = n and u = n + 1, or u = n + 1
and u = n, the absolute value of (12) is less than [n+2], which is a universal constant
times t−2n. As long as the genus of the surface is greater than 1, the full product goes
to zero as n goes to infinity. So, in the limit, all handle-slides are annihilated.

The case of a surface of genus 1 is slightly different. To get a convergent distribution
we need to divide the partial sum

∑n
i=0(−1)i[i + 1]si by n. The sequence is then

Cauchy and defines a distribution on Kt(T
2).

The algebra Kt(T
2) is very nice for working examples. If (p, q) is a pair of integers

that are relatively prime there is an obvious skein s(p,q) in Kt(T
2) corresponding to

the (p, q) curve on the torus . Define a family of skeins based on (p, q) by using
the following iterative scheme: s(p,q)0 = 2s(0,0), that is, twice the empty skein, and
s(p,q)1 = s(p,q). For d > 1 define:

s(p,q)d = s(p,q) ∗ s(p,q)d−1
− s(p,q)d−2

.

Finally, if d = gcd{p, q}, let
s(p,q) = s(p/d,q/d)d .

Using this notation the product in Kt(T
2) is given by

s(p,q) ∗ s(u,v) = t

∣

∣

∣

∣

∣

∣

p q
u v

∣

∣

∣

∣

∣

∣

s(p+u,q+v) + t
−

∣

∣

∣

∣

∣

∣

p q
u v

∣

∣

∣

∣

∣

∣

s(p−u,q−v).(14)

The formula (14) is proven in [8].

There is a map

µ : Kt(T
2) → C∅ ⊕ CH1(T

2;Z2)

introduced in [16]. Let

µ





∑

(p,q)

a(p,q)s(p,q)



 = a(0,0)∅+
∑

(p,q)6=(0,0)

a(p,q)[(p, q)],

where [(p, q)] is the Z2–homology class in H1(T
2;Z2) corresponding to d = gcd{p, q}

copies of a (p/d, q/d) curve on the torus. The map µ has as its kernel the submodule
of all commutators. Hence any linear functional on the five dimensional space that is
the image of µ is a trace. It is easy to check that there is a three dimensional family
of traces that are invariant under diffeomorphism. In this set up

YM





∑

(p,q)

a(p,q)s(p,q)



 = a(0,0).
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This is the same trace as the one induced from the inclusion of Kt(T
2) into the

non-commutative torus [8].

Towards uniqueness of the Yang-Mills measure, it should be normalized, just as the
symplectic measure on moduli space needs to be normalized. It should also be invari-
ant under diffeomorphism, and be local. Locality is made up by two rules. One for
cutting a surface along an arc and one for removing a point from a closed surface. If
we formalize our rules correctly, we get the following:

Theorem 3. The Yang-Mills measure is the unique, local, diffeomorphism invariant

trace on Kt(Σg) up to normalization.

5. Roots of Unity

Fusion no longer holds in Kt(M) when t is a root of unity. However, when t = e
πi
2r

then one can take a quotient, where an appropriate form of the fusion identity is
true. This can be done by setting any skein containing the (r − 1)-st Jones-Wenzl
idempotent equal to zero. The quotient is denoted Kr,f(M). The reduced skein is a
central object in the construction of quantum invariants of 3-manifolds [9, 21, 22].

The Yang-Mills measure on a surface with boundary is obtained the same way as for
other values of t. Since [r] = 0, the iterative procedure for finding a skein in the
annulus that annihilates handle-slides terminates, to yield

r−2
∑

i=0

(−1)i[i+ 1]©i .

There is an induced trace,

YM : Kr,f(Σg) → C,

constructed the same way as for other t except that there is no need to take a limit
because the formula is a finite sum.

Notice that Σg is the boundary of a handlebody Hg (it doesn’t make any difference
which one). There is an action of Kr,f(Σg) on Kr,f(Hg) given by gluing skeins in
Σg × I into a collar of the boundary of Hg. The action gives a map

φ : Kr,f(Σg) → End(Kr,f(Hg)).

As we are working at a root of unity, Kr,f(Hg) is a finite dimensional vector space.

Denote its dimension by d, and let ω = YM(∅) =
∑r−2

i=0
1

[i+1]2g−2 . The Yang-Mills

measure is:

YM(α) =
ω

d
tr(φ(α)).

From [23] the map φ is injective and onto. Hence we can identify Kr,f(Σg) with
End(Kr,f(Hg)). The Yang-Mills measure is zero on commutators. Thus it factors
through

End(Kr,f(Hg))/[End(Kr,f(Hg)),End(Kr,f(Hg))].
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This quotient is a 1-dimensional vector space. Hence any two linear functionals that
factor through this quotient are equal if they agree on the identity matrix. The trace
also vanishes on commutators, thus it factors through the commutator quotient. The
normalization in the formula causes the two induced linear functionals to be the same.

Next we address the cases of t = ±1. Since the formula for the measure of a spine is
an even function of t, we only need to consider one value. The value t = −1 is more
convenient as the correspondence between K−1(F ) and the SU(2)-characters of π1(F )
is simpler. The skein of the disjoint union of curves ci corresponds to the function
that sends the representation ρ to

∏

i

−tr(ρ(ci)).

Theorem 4. The Yang-Mills measure is well defined on K±1(Σg) for g > 1. Let sc
be an admissibly colored trivalent spine of Σg. If tn, with |tn| 6= 1, is a sequence of

complex numbers converging to ±1 then

lim
n→∞

YMtn(sc) = YM±1(sc).

Proof. The formulas for working with skeins in K−1(F ) are the same as the ones
for |t| 6= 1 except that quantized integers are replaced by ordinary integers. These
formulas are the limits as t → −1 of the values we have been using. Revisiting the
fundamental estimate (8), we see that,

|Tet
(

i i i
k1 k2 k3

)

|
√

|θ(i, i, k1)θ(i, i, k2)θ(i, i, k3)|
≤

√

θ(k1, k2, k3)

(−1)i+k3(k3 + 1)(i+ 1)
(15)

from which we conclude that the right hand side is less than or equal to

C(k1, k2, k3)√
i+ 1

.

Considering the series for the Yang-Mills measure of a spine, comparison to the p-series
implies that it converges as long as the surface has genus greater than 1. Similarly,
the Yang-Mills measure is invariant under handle-slides.

The convergence statement follows from the fact that the series that define the Yang-
Mills measure at tn converge absolutely, and the terms of the series converge to the
terms of the series for the Yang-Mills measure at −1.

For a surface of genus 1 we divide the partial sums, as before, by the number of terms
in the sum, and the series then converges.

Theorem 5. The Yang-Mills measure at t = −1 is the symplectic measure on M(Σg).

Proof. Using Weyl orthogonality to compute Witten’s Yang-Mills measure for a sur-
face of area ρ yields that its value on the spine sc is given by the series

∞
∑

i=0

(−1)i(i+ 1)e−ρc2(i)

6g−3
∏

j=1

1

θ(i, i, kj)

∏

v

Tet

(

i i i
kv1 kv2 kv3

)

,
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where the edges of sc carry colors ki, and kvi are the colors of the edges ending
at the vertex v, and c2(i) is the value of the quadratic Casimir operator on the
(i+ 1)-dimensional irreducible representation of SU(2). As both Witten’s series and
our series converge absolutely, and Witten’s formula converges term by term to our
formula as ρ → 0, the limit of Witten’s Yang-Mills measure is equal to our Yang-Mills
measure at t = −1. Finally, Forman [7] showed that the limit as ρ → 0 of Witten’s
measure is the symplectic measure on M(Σg), normalized as in [7].

Suppose now that |t| = 1 and t is not a root of unity. Evaluation of the Yang-Mills
measure on the empty skein on a surface of genus g yields

∑∞
i=o

1
[i+1]2g−2 . As t is not

a root of unity the number [i+1]2g−2 gets arbitrarily close to 1 infinitely often, which
means that the series does not converge. Therefore the Yang-Mills measure does not
exist away from roots of unity on the unit circle.
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