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 THE KAUFFMAN BRACKET SKEIN

 AS AN ALGEBRA OF OBSERVABLES

 DOUG BULLOCK, CHARLES FROHMAN, AND JOANNA KANIA-BARTOSZYNSKA

 (Communicated by Ronald A. Fintushel)

 ABSTRACT. We prove that the Kauffman bracket skein algebra of a cylinder

 over a surface with boundary, defined over complex numbers, is isomorphic to

 the observables of an appropriate lattice gauge field theory.

 1. INTRODUCTION

 Lattice gauge field theory brings the representation theory of an underlying man-
 ifold and its quantum invariants into the same setting. Consider the case of a

 cylinder over a compact, oriented surface with boundary. A lattice model of the

 surface determines an algebra of gauge invariant fields (i.e. observables). In the
 classical case, based on a connected, simply connected Lie group G, observables are

 the characters of the fundamental group of the lattice represented in G. Wilson
 loops can be understood as traces of conjugacy classes in the fundamental group of

 the lattice. For the theory based on a Drinfeld-Jimbo deformation of a simple Lie

 algebra g, the observables are a deformation quantization of the G-characters of the
 surface with respect to the standard Poisson structure [2]. In the case of Uh(812)
 this, together with the classical isomorphism [1, 6], allowed us to prove that the al-
 gebra of observables is the Kauffman bracket skein algebra of the surface, completed
 as an algebra over formal power series.

 In this paper we return to an analytic setting in which the deformation parameter
 is any complex number other than a root of unity. The analogous theorem relating

 observables and the Kauffman bracket skein algebra is again true. The proof is
 based on the combinatorial equivalence between the Temperley-Lieb algebra and
 the quantized invariant theory of SL2; it does not explicitly use the relationship
 with surface characters.

 The paper is organized as follows. Section 2 recalls definitions and associated

 formulas of the Kauffman bracket skein algebra. Section 3 summarizes, for the
 generic parameter, the construction of a quasi-triangular matrix model of quantum
 SL2. Section 4 outlines basic definitions and constructions of lattice gauge field
 theory. Section 5 describes the correspondence between skeins and intertwiners in

 the Verlinde algebra for quantum SL2. Finally, Section 6 contains a proof of the
 main theorem.
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 2. KAUFFMAN BRACKET SKEIN ALGEBRA

 Let t be a complex number that is neither 0 nor a root of unity. Suppose that F

 is a compact, oriented surface with boundary and I is a closed interval. Denote by

 L: the set of isotopy classes of framed links in F x I, including the empty link. Let

 CL be the vector space with basis L. Define St to be the subspace of CL spanned

 by all expressions of the form X/-t t- ( and O+t2+t-2, where the framed
 links in each expression are identical outside the balls pictured in the diagrams.

 The Kauffman bracket skein algebra Kt (F x I) is the quotient Kt (F x I)
 CL/St. Multiplication is given by laying one link over the other. More precisely,
 if ae and 3 are in L, isotop them so that a lies in F x [0, 2), and : in F x (2, 1].
 Then ae * is the union of these two links in F x [0,1]. Extend linearly to a product

 on CL. Since St is an ideal, the product descends, making the skein module into a

 skein algebra. Since the algebra structure depends on the specific product structure

 of F x I, rather than its topological type, we use the notation Kt(F).
 We use the standard convention of modeling a skein in Kt(F) on a framed,

 admissibly colored, trivalent graph. An admissible coloring is an assignment of a

 nonnegative integer to each edge so that the colors at each vertex form admissible

 triples. A triple (a, b, c) is admissible if a < b + c, b < a + c, c < a + b and a + b + c is

 even. The corresponding skein in Kt(F) is obtained by replacing each edge labeled

 with the letter m by the m-th Jones-Wenzl idempotent (see [7], or [5, p. 1361),
 and replacing trivalent vertices with Kauffinan triads (see [5, Fig. 14.7]). If s is
 a trivalent spine of F, then the set of skeins carried by admissible colorings of s

 forms a basis l3 for Kt (F). If F is an annulus, B1 consists of skeins obtained by
 labeling the core with a Jones-Wenzl idempotent. One may think of the core as

 a "trivalent" spine with one vertex, whose admissible labels are {(n, n, 0)}. The

 space Kt,(F) also has a basis 32 consisting of all links with simple diagrams on F,
 i.e. with no crossings and no trivial components.

 3. REPRESENTATIONS

 The details of the following can be found in [3]. Let A,t be the unital Hopf algebra
 on X, Y, K, K-1, with relations:

 KX = t2XK, KY t-2YK)

 XY-YX= 2 KK-1 1.

 Let m denote the irreducible (m + 1)-dimensional representation of A,t. Fixing an
 ordered basis for m we define linear functionals icn: At -> C to be the coefficient
 in the i-th row and j-th column in the representation m. The C' form a basis for

 the stable subalgebra qSL2 of the Hopf algebra dual A'. (Here q = t4.) Define
 00

 A4t fJ Mm+, (C)
 m=0

 and give it the product topology. A typical element of A,t is a sequence of arbitrarily
 chosen matrices in which the i-th term is an (i + 1) x (i + 1) matrix.

 Let Pm : At -> Mm+?((C) be the homomorphism corresponding to the represen-
 tation m. The homomorphism

 (1) 0 At>t,
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 given by () (Z) = (Po(Z), PI (Z), P2(Z),. . ), is injective and its image is dense in At
 (see [3]). The algebra At is the completion of At by equivalence classes of Cauchy
 sequences in the weak topology from qSL2. It has the structure of a topological
 ribbon Hopf algebra. The projection of At onto its (m+1)-st factor is an irreducible

 representation of At, also denoted by m. Composing mc7 with this projection yields

 a function on At, also called 'c. Thus qSL2 is understood to lie in (At)0.

 4. LATTICE GAUGE FIELD THEORY

 In this section we recall basic definitions and constructions of lattice gauge field
 theory. Details can be found in [21.

 Let F be an oriented, ciliated graph; i.e. the edges are oriented and the vertices
 carry a linear ordering of the adjacent edges. One can think of this as instructions
 for building a strip and disk model of an oriented surface F having F as a strong
 deformation retract. Vertices correspond to the disks, edges to strips, and the
 ciliation determines how to glue the strips to the disks. The surface F is called the
 envelope of r. Define a space of connections

 A(F) (0 (At)e,
 edges e

 and define an algebra of fields

 C[A(F)1 - 80 (qSL2)e.
 edges e

 Note that fields are functions on connections in the obvious way. The connections
 form a coalgebra with comultiplication as defined in [2]. Multiplication of fields is
 the convolution product dual to comultiplication of connections. There is an action
 of the gauge algebra,

 ()= (8) (At) v
 vertices v

 on the space of connections, and adjointly on fields. The invariant part of the
 gauge fields under this action is called the observables, 0(F). The multiplication
 of fields restricts to make 0(F) into an algebra, which is a deformation of the
 SL2 (C)-characters of wi (F).

 Let V be a representation of the Hopf algebra At, that is, V is a finite dimensional
 left module over At.

 The dual vector space to V carries two distinct At-module structures. When At
 acts on the left, the dual module is denoted by V*. The action is

 Z 0(v) - =(S(Z) . v)

 for any Z c At, v c V and 0 in the dual vector space to V. When At acts on the
 right, denote the dual by V' with

 X(v) . Z= 9(Z. v).
 There is an alternate description of observables in terms of "colorings" of the

 lattice. Assigning a representation Ve to each positively oriented edge e of the
 lattice 1 determines a map

 A (IF) (Ve* (0 Ve).
 e)

This content downloaded from 132.178.6.146 on Tue, 01 May 2018 22:47:19 UTC
All use subject to http://about.jstor.org/terms



 2482 D. BULLOCK, C. FROHMAN, AND J. KANIA-BARTOSZYNSKA

 This yields, at each vertex, a tensor product of representations coming from the

 edges adjoining that vertex taken in the order given by the ciliation. Use the

 representation Ve for the edges e starting at a vertex and the dual V* for the edges

 terminating there. The resulting representation at a vertex v is denoted by Vv.

 Finally, choose Xv C Inv(Vv) for each vertex v. The element 0(Ov() is evaluated
 on a connection (0,e Xe by mapping (0,e Xe to 0e(Ve* 0 Ve) and then re-parsing to
 an element of 0& Vv. By [2, Corollary 1] every observable is a linear combination
 of observables of this form.

 Now assume that F is a trivalent lattice colored by irreducible representations.

 The coloring is admissible if, at each vertex, the integers corresponding to the

 colorings of the incident edges form an admissible triple.

 Proposition 1. Suppose that 17 is an admissibly colored trivalent lattice. For each

 Vv there exists a non-zero dual element invariant under the right action of At. The
 tensor product of these invariants over all vertices defines an observable.

 The set of such observables, one for each admissible coloring, is a basis for 0(1).

 Proof. Let c = {me I e is an edge of F} be an admissible coloring. Note that
 admissibility implies a 1-dimensional invariant subspace in each Vv. Hence there is
 a non-zero observable o, = 0 XV Since o, is nonzero, there exists Xc C (v Vv so
 that o,(xc) # 0.

 Let P: 0 v & ' 0e (m*T X me) be the "parsing" map. Let tm be the map

 m* 0Xrn Mm+, (?C) > I| Mn (C) = iAt
 n

 where the inclusion is given by forming a sequence that has all zero matrices except

 for the (m + 1)-st entry corresponding to m.

 Define xc to be the connection (0e tmie) (P(X,)). Clearly o,(x,) :4 0. Since
 Pm tln = 0 unless m = n, xc is annihilated by all observables constructed from
 colorings different than c.

 FRom this we conclude that any set of observables constructed from distinct
 colorings is independent. By [21 they span. D

 There is a map

 (2) d): Kt(F) - >(F)

 that assigns to each framed link a Wilson operator. Classically, a Wilson operator is
 the trace of the holonomy of a connection along some fixed loop. The construction

 in the quantum setting is described in [2]. In a theory based on the Drinfeld-
 Jimbo Uh(812) and its Hopf algebra dual, the observables are isomorphic to the

 Kauffman bracket skein algebra of the lattice envelope. Since Uh(Sl2) is a complete
 topological algebra over C[[h]], it was necessary to complete the skein algebra as
 well. The isomorphism was inferred from the classical isomorphism, the agreement

 of Poisson brackets, and the h-adic completion. In Section 6 we will show directly
 that the map d) is an isomorphism.

 5. TEMPERLEY-LIEB THEORY

 In this section we recall the correspondence between skeins and intertwiners in

 the category of representations m of At.
 Consider a rectangle R = I x I with 2n distinguished points: n of them on

 I x {O} and n on I x {1}. Take the space of blackboard framed tangles with n
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 arc components ending at the distinguished points. Its quotient by the Kauffman
 bracket skein relations is denoted by Kt (R, n). This quotient has an algebra struc-
 ture given by placing the bottom of a rectangle on the top of another in such a way
 that the distinguished points meet.

 Fact 1. The algebra Kt(R, n) is isomorphic to End- (l?n), the space of At-linear
 maps of 1lon to itself.

 In the basis {el/2, el/2} of 1, the isomorphism is given by a tangle functor
 which makes the following assignments. A local maximum is sent to the morphism
 ,u 1 0 1 -> 0 defined by

 (3) P1(el/2 0 el/2) = it, P(e-1/2 0 e1/2) =-it-

 AL(e_1/2 0 e_1/2) = A(el/2 0 e1/2) O.

 A local minimum is associated to the morphism r : 0 -> 1 0 1 given by

 'q(1) = itel/2 0 e-1/2 - 1e-1/2 0 e-/2-
 Fact 2. The isomorphism takes the n-th Jones- Wenzl idempotent to the intertwiner
 that projects 1??n onto its highest weight invariant subspace.

 Let H= {(x, y) I y > 0} be the closed upper half plane. For any n, choose 2n
 distinguished points on the x-axis, {(1, 2, .. ., 2n)}, and form a space of blackboard-
 framed tangles with n arc components ending at the distinguished points. The
 quotient of this space by the Kauffman bracket skein relations is denoted Kt (IHI, 2n).

 Fact 3. Kt (IHI, 2n) _ Inv (((1 X 1)?)n).

 The isomorphism is given by the same tangle functor as for Fact 1.
 An admissible triple (im, n, p) determines a skein in Kt (HI,m + n +p) consisting of

 a Kauffman triad with all three legs attached to the x-axis. Fact 2 gives a canonical
 inclusion of Tn 0 n r, p into lOm 0 l?n 0 Ilop - (10 1)?(m+n+p)/2.

 Fact 4. An admissible triple (mn, , p) equivalently, a Kauffman triad corre-
 sponds to a nonzero vector in the 1-dimensional space Inv((m 0 n 0 p)').

 6. OBSERVABLES AND THE KAUFFMAN BRACKET SKEIN ALGEBRA

 Our goal is to prove a theorem analogous to [2, Theorem 10], but replacing power
 series by complex numbers.

 Theorem 1. Let 1 be a lattice and let F be its envelope. Assume that t c C \ {0}
 is not a root of unity. The algebra of observables of lattice gauge field theory on 1
 based on (At, qSL2) is isomorphic to Kt(F).

 Proof. From [2] we have an algebra map from CL to 0(17) taking a link to the
 corresponding Wilson operator. As in [2, Theorem 10] this map descends to {D
 Kt(F) -->O(F).

 The following description of {D is implicit in [2]. Since 0(17) is a homeomorphism
 invariant of F, we can assume that the lattice 1 comes from giving orientation and
 ciliation to a trivalent spine -y of F. Let L be an element of the basis B32 of Kt (F)
 (i.e., a link with a simple diagram). Choose an orientation of L. To compute the
 image of L under d>, first perform the composition

 (4) At > X m(e) eP ( ) e(l* 1)(e(e)
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 +( x) +(K2x)

 FIGURE 1. Cap tangles

 Here n(e) is the number of strands of L running along the edge c of 1, and A means
 comultiplying n(c) - 1 times in the factor corresponding to e.

 Second, in each factor where the corresponding segment of L runs against the
 orientation of the edge of 1, apply iD 0 iD- 1* 01 1 1*. Here, the morphism
 D: 1* 1 is defined by

 (5) D (e/2) ite-l/2, D (e-1/2) -it-le/2.

 Third, treat each ciliated vertex as a half plane with the cilium at infinity. Up to
 isotopy, the link L now appears as a collection of oriented caps in each half plane.
 The cap pictured on the left of Figure 1 is associated with the map 1* 0 1 -- C

 where 0 x v- qO(x), and 1 1* - C is given by x0qD X q- >(K2x) for the cap on
 the right.

 Finally, to obtain @(L), multiply the result by (_i)ILI, where ILI denotes the
 number of components of L.

 Notice that p1 sends the switch map of [2] to the map iD 0 iD-1 and sends
 multiplications to contractions. Hence our description of @P (L) for L c 32 coincides
 with the Wilson operator. It follows from [2] that d) does not depend on the choice
 of orientation of L. Extend it linearly to all of Kt(F). It is a homomorphism of
 algebras Kt(F) and 0(1F). In order to prove that {D is an isomorphism we factor it
 into two maps which are isomorphisms on the level of vector spaces.

 The first map, expressed in the basis B2, is given by a diagonal matrix with l's
 and -l's on the diagonal. The second map,

 b: Kt (F) -->0(F():

 does not require a choice of orientation of a link L. To compute the image of
 L C 32 under {D. first perform the composition (4). Second, apply the map D to
 each copy of 1*. Third, treat each vertex as a half plane and associate the map [L
 from equation (3) to the (unoriented) caps.

 Checking all possible orientations of L and F shows that @(L) = ?tD,,(L).
 By Fact 4, the map {D. takes an element of the basis l31 (i.e., a skein obtained by

 an admissible coloring of ey) to an observable coming from coloring the edges of r
 with corresponding irreducible representations of At. Thus, by Proposition 1, the
 map {D. takes the basis B1 of Kt(F) to a basis of 0(17).

 As {D and D,, differ by a composition with an isomorphism, both maps are iso-
 morphisms. O
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