1. Question Details

If \(\vec{r}(t) \) represents the position of an object at time \(t \), then \(\vec{v}(t) = \vec{r}'(t) \) represents the object's velocity, \(|\vec{v}(t)| \) represents the object's speed, and \(\vec{a}(t) = \vec{r}''(t) \) represents the object's acceleration.

Suppose \(\vec{r}(t) = (100t, 10 + 50t - 16t^2) \).

Compute the velocity as a function of time.

\[\vec{v}(t) = \]

Compute the speed as a function of time.

\[|\vec{v}(t)| = \]

Compute the acceleration as a function of time.

\[\vec{a}(t) = \]

2. Question Details

Suppose the position of a moving object is given by

\[\vec{r}(t) = (te^{-t}, t^2 - 2). \]

Compute the velocity at the instant \(t = 1 \).

\[\vec{v}(1) = \]

Compute the speed at the instant \(t = 1 \).

\[|\vec{v}(1)| = \]

Compute the acceleration at the instant \(t = 1 \).

\[\vec{a}(1) = \]
3. Question Details

Download and complete Worksheet #3. If you are working in class, get a copy from your instructor. After you complete the worksheet, fill in these answers:

\[\vec{v}(t) = \]

| \[|\vec{v}(t)| = \]

, fully simplified!

\[\vec{a}(t) = \]

What is the acceleration at the instant the object passes through the origin?

\[\vec{a} = \]

4. Question Details

The velocity of a moving object is given by

\[\vec{v}(t) = (t - 2, 2t). \]

Find the vector valued function that gives the position of the object at time \(t \) if the initial position of the object was \(\vec{r}(0) = (1, 2) \).

\[\vec{r}(t) = \]

5. Question Details

The acceleration of a moving object is given by

\[\vec{a}(t) = (6t, \sin(t)). \]

Find the vector valued function that gives the velocity of the object at time \(t \) if the initial velocity of the object was \(\vec{v}(0) = (0, 0) \).

Note: Acceleration is the derivative of velocity: \(\vec{a} = \vec{v}' \)

\[\vec{v}(t) = \]

Now find the position function, assuming that \(\vec{r}(0) = (4, 0) \).

\[\vec{r}(t) = \]
The acceleration of a moving object is given by
\[\mathbf{a}(t) = (2, -2e^{-2t}) \]

Initial velocity and position are
\[\mathbf{v}(0) = (2, 0), \quad \text{and} \]
\[\mathbf{r}(0) = (0, 0) \]

Find the position function.
\[\mathbf{r}(t) = \boxed{\text{[Formula here]}} \]