Consider the following sequence

\[a_n = \frac{n(n + 1)}{2} \]

a. Calculate the first four terms of this sequence, starting with \(n = 1 \).

\[
\begin{align*}
 a_1 &= \quad \\
 a_2 &= \\
 a_3 &= \\
 a_4 &=
\end{align*}
\]

b. Which of the following is the graph of \(a_n \)?

![Graphs of \(a_n \) and \(a_{n1} \)]

\[
\arg\lim_{n \to \infty} \frac{n(n + 1)}{2} =
\]

C. What is the limit of this sequence? Use \(\infty \) as needed.
Consider the following sequence

\[a_n = \frac{n}{n + 1} \]

a. Calculate the first four terms of this sequence, starting with \(n = 0 \).

\[a_0 = \]

\[a_1 = \]

\[a_2 = \]

\[a_3 = \]

b. Which of the following is the graph of \(a_n \)?

![Graph options]

c. What is the limit of this sequence? Use \(\infty \) as needed.

\[\lim_{n \to \infty} \frac{n}{n + 1} = \]
Consider the following sequence
\(a_n = n! \) (n factorial)

a. Calculate the first four terms of this sequence, starting with \(n = 1 \).

\[
\begin{align*}
 a_1 &= \frac{(n - 1)!}{(n + 1)!} \\
 a_2 &= \frac{(n - 1)!}{(n + 1)!} \\
 a_3 &= \frac{(n - 1)!}{(n + 1)!} \\
 a_4 &= \frac{(n - 1)!}{(n + 1)!}
\end{align*}
\]

b. What is the limit of this sequence? Use \(\infty \) as needed.

\[
\lim_{n \to \infty} \frac{n!}{(n - 1)!} = \frac{n!}{(n + 1)!}
\]
Consider the following two sequences that both go to infinity:

\[a_n = n^3 \]
\[b_n = n^2 \]

a. Find the limit of the ratio. Use \(\infty \) as needed.

\[\lim_{n \to \infty} \frac{a_n}{b_n} = \]

b. Which sequence goes to infinity faster?

- \(n^3 \) goes to infinity faster than \(n^2 \).
- \(n^3 \) goes to infinity slower than \(n^2 \).
- \(n^3 \) goes to infinity at about the same speed as \(n^2 \).

Consider the following two sequences that both go to infinity:

\[a_n = 5n^3 \]
\[b_n = 7n^3 \]

a. Find the limit of the ratio. Use \(\infty \) as needed.

\[\lim_{n \to \infty} \frac{a_n}{b_n} = \]

b. Which sequence goes to infinity faster?

- \(5n^3 \) goes to infinity faster than \(7n^3 \).
- \(5n^3 \) goes to infinity slower than \(7n^3 \).
- \(5n^3 \) goes to infinity at about the same speed as \(7n^3 \).

Consider the following two sequences that both go to infinity:

\[a_n = n! \]
\[b_n = 2^n \]

a. Find the limit of the ratio. Use \(\infty \) as needed.

\[\lim_{n \to \infty} \frac{a_n}{b_n} = \]

b. Which sequence goes to infinity faster?

- \(n! \) goes to infinity faster than \(2^n \).
- \(n! \) goes to infinity slower than \(2^n \).
- \(n! \) goes to infinity at about the same speed as \(2^n \).
Consider the following two sequences that both go to infinity:
\[a_n = 2^n \]
\[b_n = n^8 2^n \]

a. Find the limit of the ratio. Use \(\infty \) as needed.
\[\lim_{n \to \infty} \frac{a_n}{b_n} = \]

b. Which sequence goes to infinity faster?
\[2^n \text{ goes to infinity faster than } n^8 2^n. \]
\[2^n \text{ goes to infinity slower than } n^8 2^n. \]
\[2^n \text{ goes to infinity at about the same speed as } n^8 2^n. \]
Consider the following two sequences that both go to infinity:

\[a_n = n - \ln(n) \]
\[b_n = n \]

a. Find the limit of the ratio. Use \(\infty \) as needed.

\[\lim_{n \to \infty} \frac{a_n}{b_n} = \]

b. Which sequence goes to infinity faster?

- \(a_n \) goes to infinity faster than \(b_n \).
- \(a_n \) goes to infinity slower than \(b_n \).
- \(a_n \) goes to infinity at about the same speed \(b_n \).

12. All the following families of sequences go to infinity, meaning \(\lim_{n \to \infty} a_n = \infty \).

Order these families by the speed at which they go to infinity (1 = slowest to 4 = fastest).

- Powers: \(a_n = n^r \) where \(r > 0 \)
- Logarithms: \(a_n = \ln(n) \)
- Factorial: \(a_n = n! \)
- Exponential: \(a_n = b^r \) where \(b > 1 \)

13. All of the following sequences go to infinity, meaning \(\lim_{n \to \infty} a_n = \infty \).

Order them by the speed at which they go to infinity (1 = slowest to 10 = fastest).

- \(n! \)
- \(n \)
- \(n \ln(n) \)
- \(n^2 \)
- \(2^n \)
- \(3^n \)
- \(\ln(n) \)
- \(n^3 \)
- \(n^{1/3} \)
- \(n^{1/2} \)
Consider the following two sequences that both have horizontal asymptotes at zero,

\[
\lim_{n \to \infty} a_n = 0 \quad \text{and} \quad \lim_{n \to \infty} b_n = 0:
\]

\[
a_n = \frac{1}{n^{1/3}}
\]

\[
b_n = \frac{1}{n^{1/2}}
\]

a. Find the limit of the ratio. Use \(\infty\) as needed.

\[
\lim_{n \to \infty} \frac{a_n}{b_n} = ____
\]

b. Which sequence has the thicker tail? That is, which goes to zero more slowly?

- \(a_n\) has a thicker tail than \(b_n\). \((a_n \gg b_n)\)
- \(a_n\) has a thinner tail than \(b_n\). \((a_n \ll b_n)\)
- \(a_n\) and \(b_n\) have about the same tail thickness.

Consider the following two sequences that both have horizontal asymptotes at zero,

\[
\lim_{n \to \infty} a_n = 0 \quad \text{and} \quad \lim_{n \to \infty} b_n = 0:
\]

\[
a_n = \frac{1}{n!}
\]

\[
b_n = \frac{1}{e^n}
\]

a. Find the limit of the ratio. Use \(\infty\) as needed.

\[
\lim_{n \to \infty} \frac{a_n}{b_n} = ____
\]

b. Which sequence has the thicker tail? That is, which goes to zero more slowly?

- \(a_n\) has a thicker tail than \(b_n\). \((a_n \gg b_n)\)
- \(a_n\) has a thinner tail than \(b_n\). \((a_n \ll b_n)\)
- \(a_n\) and \(b_n\) have about the same tail thickness.
Consider the following two sequences that both have horizontal asymptotes at zero, \(\lim_{n \to \infty} a_n = 0 \) and \(\lim_{n \to \infty} b_n = 0 \):

\[
\begin{align*}
 a_n &= \frac{1}{\log_2(n)} \\
b_n &= \frac{1}{\log_3(n)}
\end{align*}
\]

a. Find the limit of the ratio. Use \(\infty \) as needed.

\[
\lim_{n \to \infty} \frac{a_n}{b_n} = \quad \square
\]

Hint: The change of base formula for logarithms is \(\log_b(n) = \frac{\ln(n)}{\ln(b)} \).

b. Which sequence has the thicker tail? That is, which goes to zero more slowly?

- \(a_n \) has a thicker tail than \(b_n \) \((a_n \gg b_n) \)
- \(a_n \) has a thinner tail than \(b_n \) \((a_n \ll b_n) \)
- \(a_n \) and \(b_n \) have about the same tail thickness.
All of the following sequences have horizontal asymptotes at zero, meaning \(\lim_{n \to \infty} a_n = 0 \).

Order them by the thickness of their tails, 1 = thickest (goes to zero slowest) to 8 = thinnest (goes to zero fastest).

- \(2^{-n}\)
- \(\frac{1}{n^2}\)
- \(\frac{1}{n}\)
- \(\frac{1}{n!}\)
- \(\left(\frac{1}{3}\right)^n\)
- \(\frac{1}{\ln(n)}\)
- \(\frac{1}{n^{1/2}}\)
- \(\frac{1}{n\ln(n)}\)
Consider the following sequence
\[a_n = \frac{2n^2 - 5n^3 + 6}{2n^3 + n + 8} \]

Find the limit of this sequence as follows

1. For large values of \(n \) this fraction is approximately the ratio of the dominant terms (the ones that go to infinity the fastest).
 Select the correct ratio of dominant terms.
 - \[\frac{2n^2}{2n^3 + n + 8} \approx \frac{-5n^3}{n} \]
 - \[\frac{2n^2}{2n^3 + n + 8} \approx \frac{2n^2}{2n^3} \]
 - \[\frac{2n^2}{2n^3 + n + 8} \approx \frac{-5n^3}{2n^3} \]
 - \[\frac{2n^2}{2n^3 + n + 8} \approx \frac{6}{8} \]

2. Use the above approximation to find the limit of this sequence.
\[\lim_{n \to \infty} a_n = \]

Consider the following sequence
\[a_n = \frac{n^2 + 2n + 3}{\sqrt{4n^4 + 2n^2 + 1}} \]

Find the limit of this sequence as follows

1. For large values of \(n \) this fraction is approximately the ratio of the dominant terms (the ones that go to infinity the fastest).
\[a_n \approx \]

2. Use the above approximation to find the limit of this sequence.
\[\lim_{n \to \infty} a_n = \]
20. Consider the following sequence
\[a_n = \frac{2^n + 3^{-n}}{5^{-n} + 3^n} \]

Find the limit of this sequence as follows

1. For large values of \(n \) this fraction is approximately the ratio of the dominant terms.
 \[a_n \approx \]

2. Use the above approximation to find the limit of this sequence.
 \[\lim_{n \to \infty} a_n = \]

21. Find the limit of the following sequence
 \[\lim_{n \to \infty} \frac{\sqrt{n^2 + 3}}{1 - 3n} = \]

22. Find the limit of the following sequence
 \[\lim_{n \to \infty} \frac{1 + 2^{n+1}}{1 + 2^n} = \]