• Recall that you have some very quick rules for computing the derivative of a function at a letter location. Assuming that a, b and n are constants:

$$\frac{d}{dx}(a) = 0$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(\sin(x)) = \cos(x)$$

$$\frac{d}{dx}(\cos(x)) = -\sin(x)$$

$$\frac{d}{dx}(\ln(x)) = \frac{1}{x}$$

$$\frac{d}{dx}(af + bg) = a\frac{df}{dx} + b\frac{dg}{dx}$$

• Be able to express a complex function in terms of its “insides” and “outside” pieces.

1. First determine what the “insides” (or stuff) is and call it the variable u.

 $$u = \text{stuff}$$

2. Rewrite the function in terms of u. Your outside function should be one of the basic functions listed above.

3. Find the derivative of u (the insides) in terms of x (labeled $\frac{du}{dx}$) and $f(u)$ (the outside) in terms of u (labeled $\frac{df}{du}$).

4. Use the **Chain Rule** to find the derivative by multiplying the derivatives together.

 $$f'(x) = \frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$$

5. Rewrite the final answer only in terms of the original variable x.

Once one gets good at finding the insides and outsides the above steps can be put together.
For example if \(f(x) = \ln(x^2 - x^3) \), then

Insides: \(u = x^2 - x^3 \)
Outside: \(f(u) = \ln(u) \)

The derivatives of the inside and outsides are

\[
\frac{du}{dx} = 2x - 3x^2 \\
\frac{df}{du} = \frac{1}{u}
\]

Multiply the results together and rewrite only in terms of \(x \).

\[
f'(x) = \frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dx} = \left(\frac{1}{u}\right)(2x - 3x^2) = \left(\frac{1}{x^2 - x^3}\right)(2x - 3x^2) = \frac{2x - 3x^2}{x^2 - x^3}
\]

Recall \(u = x^2 - x^3 \) so replace \(u \) with its formula in \(x \).

- You can find more examples of using the Chain Rule
 - In your text book in section 3.4 on page 199.
 - At [Khan Academy](https://www.khanacademy.org) and more, linked from that page.

- An **antiderivative** is any function such that if you take its derivative you get the original function.
 - Be able to check guesses for antiderivatives and determine if they are correct or not.
 - Be able to fix a guess for an antiderivative if it is close but slightly off.
 - Be able to find multiple antiderivatives for a single function.
 - Be able to find antiderivatives yourself via ‘guessing and checking’ method.