Notes and Learning Goals

Math 170
Lesson 15-2: Substitution II

In the previous lesson you learned a process for transforming antiderivatives and integrals. In every homework problem you were given:

\[u = \text{formula with } x \]

Today you have to think of your own formulas.

1. Learn to make good choices for \(u = \text{formula with } x \).

2. Know that any choice is allowed. But not all choices are useful.

 Here are some suggestions for how to make useful choices.

 • If any part of the problem is a function with insides, consider:
 \[u = \text{insides} \]

 Example: \(\int x \sqrt{4 - x^2} \, dx \) The insides are \(u = 4 - x^2 \).

 • If there is a denominator more complicated than \(x \) or \(x^n \), consider:
 \[u = \text{denominator} \]

 Example: \(\int \frac{x^2}{3x + 4} \, dx \) The denominator is \(u = 3x + 4 \).

 • If some stuff looks like the derivative of some other stuff, consider:
 \[u = \text{the other stuff} \]

 Example: \(\int \frac{1}{x} \ln x \, dx \) The derivative of \(\ln x \) is \(\frac{1}{x} \), so try \(u = \ln x \).

3. Know that these are not rules. They are suggestions for what work.

 Many WebAssign exercises are set up so that you get immediate feedback on whether or not you make a good choice, but this is only in WebAssign. On a test, or in Calculus II, you have to judge whether you made a good choice.

 The only way to do this is to complete the transformation and decide if the new integral or antiderivative is better than the original.