Instructions

- This assignment is extra credit.
- Each problem is an application that either uses derivatives or uses integrals. It's your job to decide which.
- The problems are not organized or ordered by type or difficulty.
- Study tip: Work with a partner. Read each problem and decide if it uses integrals or derivatives. Discuss how you would plan the solution.

1. Question Details

The table below gives the height, h, of a falling object (in feet) at various times, t (in seconds).

<table>
<thead>
<tr>
<th>h (ft)</th>
<th>70</th>
<th>69</th>
<th>66</th>
<th>61</th>
<th>54</th>
<th>46</th>
<th>37</th>
<th>27</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>t (s)</td>
<td>0.00</td>
<td>0.25</td>
<td>0.50</td>
<td>0.75</td>
<td>1.00</td>
<td>1.25</td>
<td>1.50</td>
<td>1.75</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Compute $\frac{dh}{dt}$ at the instant when $t = 0.5$ seconds. Round your answer to the nearest whole number. Include units.

$\frac{dh}{dt} \bigg|_{t=0.5} = \boxed{________}$

2. Question Details

The potential across a capacitor is given by

$$V(t) = 12 - 12e^{-1.13t}$$

where V is measured in volts and t is time in seconds. When is the potential changing at 4 volts per second? Be accurate to 2 decimal places. Include units.
3. A projectile is launched straight up. Its height, \(h \), is measured in meters. Time, \(t \), is in seconds. The graph below shows the rate of change of \(h \) in units of meters per second.

If \(h(0) = 20 \) m, what is \(h(5) \)? Give an exact decimal answer with correct units.

\[
h(5) = \quad \text{m}
\]

4. A falling object has height given by \(h(t) = 1200 - 16.1t^2 \) ft, with \(t \) in seconds. How high is it when its velocity is \(-250\) ft/s? Be accurate to one decimal place. Include units.

\[
\quad \text{ft}
\]
5. The function $f(t)$ measures the price of a commodity during one day of trading. The units on f are dollars per pound ($/lb), and t is time in hours.

The graph shows the price change over time. To find the rate of change at the instant when the price is $5 /lb, you need to use the graph.

NOTE: You can use "$" to abbreviate "dollars" in WebAssign units, but you can't put the $-sign in front of the number like you would for American currency. Click here for more info.

6. The table below gives the rate of change of temperature of a cooling object. Temperature, T, is measured in Kelvins (K), and time, x, is in minutes.

<table>
<thead>
<tr>
<th>$\frac{dT}{dx}$ (K/min)</th>
<th>-3.8</th>
<th>-2.6</th>
<th>-1.8</th>
<th>-1.2</th>
<th>-0.8</th>
<th>-0.6</th>
<th>-0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x (min)</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
</tbody>
</table>

Find the total change in temperature on the time interval $0 \leq x \leq 30$ minutes. Tolerances are wide, but not ridiculous.

7. The potential across a capacitor is given by

$$V(t) = 12 - 12e^{-1.13t}$$

where V is measured in volts and t is time in seconds. At the instant $t = 2$ seconds, find the rate of change of $\frac{dV}{dt}$.

Be accurate to 2 decimal places. Include units.
8. An object is moving up and down with velocity given by
\[v(t) = -195 \sin(7.8t) \]
where \(v \) is measured in cm per second and \(t \) is time in seconds. (The object is a yo-yo). Its height at time zero is \(h(0) = 100 \) cm. Compute \(h(0.3) \). Be accurate to one decimal place. Include units.
\[h(0.3) = \]

9. A projectile is launched straight up. Its height, \(h \), is measured in meters. Time, \(t \), is in seconds. The graph below shows the rate of change of \(h \) in units of meters per second.

Compute the total change in height during the time interval \(2 \leq t \leq 5 \) seconds. Give an exact answer with correct units.
\[\Delta h = \]

10. A falling object has height given by \(h(t) = 1200 - 16.1t^2 \) ft, with \(t \) in seconds. What is the rate of change of height at the instant \(t = 3 \) s? Be accurate to one decimal place. Include units.
The function \(f(t) \) measures the price of a commodity during one day of trading. The units on \(f \) are dollars per pound (\$/lb), and \(t \) is time in hours.

When is the rate of change of the price exactly zero? Tolerances are reasonable, but you will have to use some care reading the graph.

A falling object has height given by \(h(t) = 1200 - 16.1t^2 \) ft, with \(t \) in seconds. When is its velocity \(-100\) ft/s? Be accurate to 3 decimal places. Include units.

The potential across a capacitor is given by
\[
V(t) = 12 - 12e^{-1.13t}
\]
where \(V \) is measured in volts and \(t \) is time in seconds. Find \(V'(t) \) at the instant when \(V(t) = 6 \) volts. Be accurate to two decimal places. Include units.

An object is moving up and down with velocity given by
\[
v(t) = -195\sin(7.8t)
\]
where \(v \) is measured in cm per second and \(t \) is time in seconds. (The object is a yo-yo). Find the rate of change of velocity at the instant \(t = 0.5 \) seconds. Be accurate to one decimal place. Include units.
15. Question Details

A projectile is launched straight up. Its height, \(h \), is measured in meters. Time, \(t \), is in seconds. The graph below shows the rate of change of \(h \) in units of meters per second.

\[h' \ (\text{m/s}) \]

If \(h(0) = 20 \) meters, what is the maximum height? Give an exact answer with units.

\[h_{\text{max}} = \]

16. Question Details

The price of a certain commodity is expected to change at a rate of

\[\frac{dP}{dt} = \frac{15 \ (0.5t + 1)^2}{\text{$/lb/day}} \]

It is currently priced at 8 \$/lb. Predict the price 10 days from now.

17. Question Details

Suppose that \(\sin \theta = \frac{x}{z} \). In this problem:

- \(x \), \(z \) and \(\theta \) are all functions of time, \(t \).
- \(x \) and \(z \) are measured in miles; \(\theta \) in radians, and \(t \) in hours.
- \(\frac{dx}{dt} = -60 \text{ mph.} \)

Find \(\frac{d\theta}{dt} \) when \(z = 2 \) miles, \(\theta = \frac{\pi}{6} \), and \(\frac{dz}{dt} = -55 \text{ mph.} \)

Be accurate to two decimal places. Include units.

18. Question Details

A falling object has height given by \(h(t) = 1200 - 16.1t^2 \) ft, with \(t \) in seconds. What is the rate of change of velocity at the instant \(t = 3 \) s? Be accurate to one decimal place. Include units.
19. A projectile is launched straight up. Its height, \(h \), is measured in meters. Time, \(t \), is in seconds. The graph below shows its velocity in meters per second.

Find the rate of change of velocity at the instant \(t = 2 \) seconds. Give an exact answer with units.

20. An object is moving up and down with velocity given by
\[
v(t) = -195 \sin(7.8t)
\]
where \(v \) is measured in cm per second and \(t \) is time in seconds. (The object is a yo-yo).
Find the rate of change of height at the instant \(t = 0.5 \) seconds. Be accurate to one decimal place. Include units.
21. Question Details

The function $f(t)$ measures the price of a commodity during one day of trading. The units on f are dollars per pound ($/lb), and t is time in hours.

What is the price at the instant when $f'(t) = 0$? Tolerances are reasonable, but you will have to use some care reading the graph.

NOTE: You can use "$" to abbreviate "dollars" in WebAssign units, but you can't put the $-sign in front of the number like you would for American currency. Click here for more info.

22. Question Details

The price of a certain commodity is expected to change at a rate of

$$\frac{dP}{dt} = \frac{15}{(0.5t+1)^2} \text{ $/lb/day}$$

How much will the price change during the time interval $0 \leq t \leq 5$ days? Round your answer to the nearest penny/lb.

23. Question Details

The table below gives the height, h, of a falling object (in feet) at various times, t (in seconds).

<table>
<thead>
<tr>
<th>h (ft)</th>
<th>70</th>
<th>69</th>
<th>66</th>
<th>61</th>
<th>54</th>
<th>46</th>
<th>37</th>
<th>27</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>t (s)</td>
<td>0.00</td>
<td>0.25</td>
<td>0.50</td>
<td>0.75</td>
<td>1.00</td>
<td>1.25</td>
<td>1.50</td>
<td>1.75</td>
<td>2.00</td>
</tr>
</tbody>
</table>

When is the velocity of the object -30 ft/s? Round to the nearest quarter of a second.
The table below gives the rate of change of temperature of a cooling object. Temperature, T, is measured in Kelvins (K), and time, x, is in minutes.

<table>
<thead>
<tr>
<th>$\frac{dT}{dx}$ (K/min)</th>
<th>-3.8</th>
<th>-2.6</th>
<th>-1.8</th>
<th>-1.2</th>
<th>-0.8</th>
<th>-0.6</th>
<th>-0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x (min)</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
</tbody>
</table>

Assuming that $T(0) = 350$ K, estimate $T(30)$.

NOTE: WebAssign will only accept "K" for Kelvins. Don't try any other abbreviations or unit conversions. Tolerances are wide, but not ridiculous.

$T(30) =$