Goals:

- Compute quick derivatives.
- Compute higher derivatives.
- Know what to do when you encounter an inverse trig function or a non-base-e exponential.

Exercises:

1. Find the second derivative, or y'', for each of the following. Assume that a, b, c and n are constants. Assume that f and g are unknown functions of x.

 (a) $y = c$
 (b) $y = x$
 (c) $y = x^n$
 (d) $y = e^x$
 (e) $y = \ln x$
 (f) $y = \sin x$
 (g) $y = \cos x$
 (h) $y = \tan x$
 (i) $y = \cot x$
 (j) $y = \sec x$
 (k) $y = \csc x$
 (l) $y = af + bg$

2. Find f'' for each of the following. Assume that A, k and ω are constants.

 (a) $f(t) = \sin 4t$
 (b) $f(t) = \cos 0.031$
 (c) $f(t) = e^{-0.02t}$
 (d) $f(t) = e^{-t} \cos 2t$
 (e) $f(t) = A \cos \omega t$
 (f) $f(t) = e^{kt} \sin \omega t$
3. Find y' for each of the following. You do not need to completely simplify. You can leave your answers as $y' = \text{stuff with } y$'s in it.

(a) $y = \arccsc x$
(b) $y = (x - 1)^{(x+1)}$

Challenges: Find y'' for each of the following:

1. $y = \arccsc x$
2. $y = (x - 1)^{(x+1)}$
Hints and Answers

Exercises:

1. (a) \(y'' = 0 \)
 (b) \(y'' = 0 \)
 (c) \(y'' = n(n - 1)x^{n-2} \)
 (d) \(y'' = e^x \)
 (e) \(y'' = -x^{-2} \)
 (f) \(y'' = -\sin x \)
 (g) \(y'' = -\cos x \)
 (h) \(y'' = 2 \sec x \sec x \tan x \)
 (i) \(y'' = 2 \csc x \csc x \cot x \)
 (j) \(y'' = \sec x \sec^2 + \sec x \tan x \tan x \)
 (k) \(y'' = \csc x \csc^2 + \csc x \cot x \cot x \)
 (l) \(y'' = af'' + bg'' \)

2. (a) \(f'' = -16 \sin 4t \)
 (b) \(f'' = -0.000961 \cos 0.031 \)
 (c) \(f'' = 0.004e^{-0.02t} \)
 (d) \(f'' = 4e^{-t} \sin 2t - 3e^{-t} \cos 2t \)
 (e) \(f'' = -A \omega^2 \cos \omega t \)
 (f) \(f'' = (k^2 - \omega^2)e^{kt} \sin \omega t + 2k\omega e^{kt} \cos \omega t \)

3. (a) \(y' = -\frac{1}{\csc y \cot y} = -\sin y \tan y = -\frac{1}{x \sqrt{x^2 - 1}} \)
 (b) \(y' = y \left[\frac{x + 1}{x - 1} + \ln(x - 1) \right] = (x - 1)^{(x+1)} \left[\frac{x + 1}{x - 1} + \ln(x - 1) \right] \)

Challenges:

1. \(y' = \frac{x \cdot \frac{1}{2}(x^2 - 1)^{-1/2} \cdot 2x + (x^2 - 1)^{1/2}}{x^2(x^2 - 1)} \)

2. \(y' = (x - 1)^{(x+1)} \left[\frac{x + 1}{x - 1} + \ln(x - 1) \right] \left[\frac{x + 1}{x - 1} + \ln(x - 1) \right] + (x - 1)^{(x+1)} \left[-\frac{2}{(x - 1)^2} + \frac{1}{x - 1} \right] \)

3