Consider the region bounded by $y = 1 - x^2$, the y-axis, and the line $y = -3$. The figure represents a thin plate made of material (steel) that weighs 41 lbs/ft². Both axes are measured in feet.

1. Sketch the region on your own paper. Slice it into horizontal slices and draw a typical slice.
2. Find the (tiny) moment about the x-axis caused by your slice.
 \[dM_x = \quad \]

 Warning: The sign convention can be counter-intuitive.
 If you drew your slice above the x-axis then the moment acts in the negative direction.
 If you drew your slice below the x-axis, then the distance to the slice is
 \[(\text{top}) - (\text{bottom}) = 0 - y\]
3. Find the correct bounds of integration. Then compute the integral to find the total moment about the x-axis. Round your answer to the nearest ft·lb.
 Note: The integral will require either substitution or machine help.
 \[M_x = \int \quad dM_x = \int \quad \]
Consider the region bounded by $y = \sqrt{x+2}$, the x-axis, and the line $y = x$. The figure represents a thin plate made of material (steel) that weighs 41 lbs/ft2. Both axes are measured in feet. The pivot axis is a horizontal line, l, located at $y = 1$.

1. Sketch the region on your own paper. Slice it into horizontal slices and draw a typical slice.

2. Find the (tiny) moment about l caused by your slice.

 $$dM_l = \ldots$$

3. Find the correct bounds of integration. Then compute the integral to find the total moment about l. Be accurate to one decimal place.

 $$M_l = \int \ldots dM_l = \ldots$$
Consider the region bounded by \(y = x + 1 \) and \(y = x^2 - 1 \). The figure represents a thin plate of material (steel) that weighs 40 lbs/ft\(^2\). Both axes are measured in feet.

1. Sketch the region on your own paper. Slice it into vertical slices and draw a typical slice.
2. Find the (tiny) weight of your slice.
 \[dF = \]
3. Find the (tiny) moment about the \(y \)-axis caused by your slice.
 \[dM_y = \]
4. Find the total weight of the plate.
 \[F = \]
5. Find the total moment about the \(y \)-axis.
 \[M_y = \]
6. Compute \(\frac{M_y}{F} \) include correct units.
 \[\frac{M_y}{F} = \]
Consider the region bounded by \(y = x + 1 \) and \(y = x^2 - 1 \). The figure represents a thin plate of material (steel) that weighs 40 lbs/ft\(^2\). Both axes are measured in feet. The moment axis, \(l \), is positioned at an unknown location, \(x = b \).

1. Find the moment about \(l \). Give an exact symbolic answer in terms of \(b \).

\[
M_l = \boxed{\text{Expression in terms of } b}
\]

2. Simplify your answer for \(M_l \) as far as possible. You should end up with a simple answer that contains both of the numbers you computed in the previous problem, \(F \) and \(M_y \).

Which of the following is correct?

- \(M_l = M_y - Fb \)
- \(M_l = F - M_y b \)
- \(M_l = F + M_y b \)
- \(M_l = M_y + Fb \)

3. Find \(b \) so that the plate is perfectly balanced on the moment axis, \(l \).

\[
b = \boxed{\text{Expression}}
\]

\textbf{Warning!} Only 3 submits allowed. Don't guess.
Consider the region bounded by $y = \sqrt{2x+4}$, the x-axis, and the line $x = 3$. The figure represents a thin plate made of material that weighs 25 N/m2. Both axes are measured in meters. The pivot axis is a horizontal line, l, at an unknown location b.

Find b so that the plate balances on the moment axis, l. Be accurate to three decimal places and include units.

$$b = \boxed{\text{}}$$