The graph of the functions $y = x^2$ and $y = \frac{1}{x^2}$ are shown below.

a. Which of the following limit expressions best describes the graph of $y = x^2$ as $x \to \infty$?

- $\lim_{x \to \infty} x^2 = 2x$
- $\lim_{x \to \infty} x^2 = 0$
- $\lim_{x \to \infty} x^2 = 2$
- $\lim_{x \to \infty} x^2 = \infty$

b. Which of the following limit expressions best describes the graph of $y = \frac{1}{x^2}$ as $x \to \infty$?

- $\lim_{x \to \infty} \frac{1}{x^2} = \frac{-2}{x^3}$
- $\lim_{x \to \infty} \frac{1}{x^2} = 0$
- $\lim_{x \to \infty} \frac{1}{x^2} = 2$
- $\lim_{x \to \infty} \frac{1}{x^2} = \infty$
The graph of the functions $y = e^x$ and $y = e^{-x} = \frac{1}{e^x}$ are shown below.

Find the following limits

a. $\lim_{x \to \infty} e^{-x} = $

b. $\lim_{x \to \infty} e^x = $

The graph of the functions $y = \sqrt{x}$ and $y = \ln(x)$ are shown below.

Find the following limits

a. $\lim_{x \to \infty} \sqrt{x} = $

b. $\lim_{x \to \infty} \ln(x) = $

Suppose $f(x)$ is a function such that $\lim_{x \to \infty} f(x) = \infty$. Find the following limit

$\lim_{x \to \infty} \frac{1}{f(x)} = $
5. **Question Details**

fa16 limit at inf 4 [3654406]

a. Find the following limit

\[\lim_{{x \to \infty}} \frac{x^2}{x^3} = \]

Hint: Simplify the fraction first.

b. Which of the following statements best describes the relationship the above limit gives between \(x^2 \) and \(x^3 \) as \(x \to \infty \)?

- \(x^2 \) goes to infinity slower than \(x^3 \).
- \(x^2 \) goes to infinity about the same speed as \(x^3 \).
- \(x^2 \) goes to infinity faster than \(x^3 \).

6. **Question Details**

fa16 limit at inf 5 [3654407]

a. Find the following limit

\[\lim_{{x \to \infty}} \frac{e^x}{x^2} = \]

Hint: Use L'Hopital's Rule or think about which function is dominant as \(x \to \infty \).

b. Which of the following statements best describes the relationship the above limit gives between \(e^x \) and \(x^2 \) as \(x \to \infty \)?

- \(e^x \) goes to infinity slower than \(x^2 \).
- \(e^x \) goes to infinity about the same speed as \(x^2 \).
- \(e^x \) goes to infinity faster than \(x^2 \).

7. **Question Details**

fa16 limit at inf 6 [3654408]

a. Find the following limit

\[\lim_{{x \to \infty}} \frac{5x^2}{3x^2} = \]

Hint: Simplify the fraction first.

b. Which of the following statements best describes the relationship the above limit gives between \(5x^2 \) and \(3x^2 \) as \(x \to \infty \)?

- \(5x^2 \) goes to infinity slower than \(3x^2 \).
- \(5x^2 \) goes to infinity faster than \(3x^2 \).
- \(5x^2 \) goes to infinity at about the same speed as \(3x^2 \).
All of the following functions go to infinity as $x \to \infty$, $\lim_{x \to \infty} f(x) = \infty$.

Order these by the speed at which they go to infinity. Enter the functions in the boxes below using the notation "Slower Function \ll Faster Function". Only 3 submits per answer box.

$\lim_{x \to \infty}$

All of the following functions go to infinity as $x \to \infty$, $\lim_{x \to \infty} f(x) = \infty$.

Order these by the speed at which they go to infinity. Enter the functions in the boxes below using the notation "Slower Function \ll Faster Function". Only 3 submits per answer box.
10. All the following families of functions go to infinity as \(x \to \infty \), \(\lim_{x \to \infty} f(x) = \infty \).

A: Powers: \(x^n \) where \(n > 1 \)
B: Exponential: \(a^x \) where \(a > 1 \)
C: Logarithms: \(\log_a(x) \) where \(a > 1 \)
D: Roots: \(\sqrt[n]{x} = x^{1/n} \) where \(n > 1 \)

Order these families by the speed at which they go to infinity.

---Select--- \(<\)<---Select--- \(<\)<---Select--- \(<\)<---Select--- \(<\<\>

11. All of the following functions go to infinity as \(x \to \infty \), \(\lim_{x \to \infty} f(x) = \infty \).

Order these by the speed at which they go to infinity. 1 is the slowest, 8 is the fastest.

\(x^5 \) ---Select--- \(<\>
\(x^{1/5} \) ---Select--- \(<\>
\(e^x \) ---Select--- \(<\>
\(5^x \) ---Select--- \(<\>
\(x^2 \) ---Select--- \(<\>
\(x^{1/2} \) ---Select--- \(<\>
\(\ln(x) \) ---Select--- \(<\>
\(2^x \) ---Select--- \(<\>

12. Consider the limit
\[
\lim_{x \to \infty} \frac{2x^2 - 5x^3 + 6}{2x^3 + x + 8}
\]

a. For large values of \(x \) this fraction is approximately the ratio of the dominant terms (the ones that go to infinity the fastest). Select which is the correct approximation for large values of \(x \).

\[
\frac{2x^2}{2x^3 + x + 8} \approx \frac{-5x^3}{2x^3} \]
\[
\frac{2x^2 - 5x^3 + 6}{2x^3 + x + 8} \approx \frac{6}{8} \]
\[
\frac{2x^2 - 5x^3 + 6}{2x^3 + x + 8} \approx \frac{2x^2}{2x^3} \]
\[
\frac{2x^2 - 5x^3 + 6}{2x^3 + x + 8} \approx \frac{-5x^3}{x}
\]

b. Use the above approximation to find the limit.
\[
\lim_{x \to \infty} \frac{2x^2 - 5x^3 + 6}{2x^3 + x + 8} = \]
Consider the limit
\[
\lim_{x \to \infty} \frac{5x^{3/2} - 4x^{5/2} + 12}{3x^2 - 6x + 5}
\]

a. For large values of \(x\), the above ratio is approximately:
- \(\frac{5x^{3/2} - 4x^{5/2} + 12}{3x^2 - 6x + 5} \approx \frac{12}{5}\)
- \(\frac{5x^{3/2} - 4x^{5/2} + 12}{3x^2 - 6x + 5} \approx \frac{-5}{3}\)
- \(\frac{5x^{3/2} - 4x^{5/2} + 12}{3x^2 - 6x + 5} \approx \frac{5x^{3/2}}{3x^2}\)
- \(\frac{5x^{3/2} - 4x^{5/2} + 12}{3x^2 - 6x + 5} \approx \frac{-4x^{5/2}}{3x^2}\)

b. Use the above approximation to find the limit.
\[
\lim_{x \to \infty} \frac{5x^{3/2} - 4x^{5/2} + 12}{3x^2 - 6x + 5} = \ldots
\]

Consider the limit
\[
\lim_{x \to \infty} \frac{2x^2 - 6x + 5}{\sqrt{4 - 6x^2 + 9x^4}}
\]

a. For large values of \(x\), the above fraction is approximately:
- \(\frac{2x^2 - 6x + 5}{\sqrt{4 - 6x^2 + 9x^4}} \approx \frac{2x^2}{3x^2}\)
- \(\frac{2x^2 - 6x + 5}{\sqrt{4 - 6x^2 + 9x^4}} \approx \frac{2x^2}{9x^4}\)
- \(\frac{2x^2 - 6x + 5}{\sqrt{4 - 6x^2 + 9x^4}} \approx \frac{2x^2}{9x^2}\)
- \(\frac{2x^2 - 6x + 5}{\sqrt{4 - 6x^2 + 9x^4}} \approx \frac{5}{2}\)

b. Use the above approximation to find the limit.
\[
\lim_{x \to \infty} \frac{2x^2 - 6x + 5}{\sqrt{4 - 6x^2 + 9x^4}} = \ldots
\]
Consider the limit
\[\lim_{x \to \infty} \frac{3 - 6 \cdot (2^x)}{5 + x + 5 \cdot (3^x)} \]

a. For large values of \(x \), the above fraction is approximately:
- \(\frac{3 - 6 \cdot (2^x)}{5 + x + 5 \cdot (3^x)} \approx \frac{3}{5} \)
- \(\frac{3 - 6 \cdot (2^x)}{5 + x + 5 \cdot (3^x)} \approx \frac{3}{x} \)
- \(\frac{3 - 6 \cdot (2^x)}{5 + x + 5 \cdot (3^x)} \approx \frac{-6}{5} \)
- \(\frac{3 - 6 \cdot (2^x)}{5 + x + 5 \cdot (3^x)} \approx \frac{3}{5} \)

b. Use the above approximation to find the limit.
\[\lim_{x \to \infty} \frac{3 - 6 \cdot (2^x)}{5 + x + 5 \cdot (3^x)} = \]

Consider the limit
\[\lim_{x \to \infty} \frac{\sqrt{25x^4 + 15x^2 + 6}}{7x^2 + 9x + 10} \]

a. For large values of \(x \), the above fraction is approximately:
\[\frac{\sqrt{25x^4 + 15x^2 + 6}}{7x^2 + 9x + 10} \approx \]

b. Use the above approximation to find the limit.
\[\lim_{x \to \infty} \frac{\sqrt{25x^4 + 15x^2 + 6}}{7x^2 + 9x + 10} = \]

Consider the limit
\[\lim_{x \to \infty} \frac{3x^3 - 5x^5 + 1}{5x^5 - 7 \cdot (2^x)} \]

a. For large values of \(x \), the above fraction is approximately:
\[\frac{3x^3 - 5x^5 + 1}{5x^5 - 7 \cdot (2^x)} \approx \]

b. Use the above approximation to find the limit.
\[\lim_{x \to \infty} \frac{3x^3 - 5x^5 + 1}{5x^5 - 7 \cdot (2^x)} = \]
18. Question Details

Consider the limit
\[\lim_{x \to \infty} \frac{3x^5 + 9x^4 - 31x}{2x^4 - 31x^2 + 12} \]

a. For large values of \(x \), the above fraction is approximately:
\[\frac{3x^5 + 9x^4 - 31x}{2x^4 - 31x^2 + 12} \approx \]

b. Use the above approximation to find the limit.

\[\lim_{x \to \infty} \frac{3x^5 + 9x^4 - 31x}{2x^4 - 31x^2 + 12} = \]

19. Question Details

Evaluate the following limit
\[\lim_{x \to \infty} \frac{\sqrt{9x^4 - 3x^2 + 5x + 1}}{5x^2 - 6x + 1} = \]

20. Question Details

Evaluate the following limit
\[\lim_{x \to \infty} \frac{3x^2 + 5^x}{4x^2 + 6^{-x} + 3^x} = \]
Answer the following questions. **You only get two submits per answer box.**

a. Order the functions, \(x^2, x^3 \) and \(\sqrt{x} \), by the speed they go to infinity.

\[
\begin{array}{c}
\boxed{\quad < < \quad}
\end{array}
\]

b. Order the functions, \(\frac{1}{x^2}, \frac{1}{x^3} \) and \(\frac{1}{\sqrt{x}} \), by their tail thickness, as shown in the graph below. Use the notation "Thinner Tail \(\ll \) Thicker Tail".

\[
\begin{array}{c}
\boxed{\quad < < \quad}
\end{array}
\]

22. **Question Details**

The following functions, \(\frac{1}{x}, \frac{1}{\ln(x)} \) and \(\frac{1}{2^x} \), all have a horizontal asymptote at 0, \(\lim_{x \to \infty} f(x) = 0 \)

Order these functions by their tail thickness. **You only get two submits per answer box.**

\[
\begin{array}{c}
\boxed{\quad < < \quad}
\end{array}
\]
All of the following functions have a horizontal asymptote at 0, \(\lim_{x \to \infty} f(x) = 0 \).

Order these by the thickness of their tail. 1 is the thinnest, 6 is the thickest.

\[
\begin{align*}
\frac{1}{x^{1/5}} & \quad \text{---Select---} \\
\frac{1}{e^x} & \quad \text{---Select---} \\
\frac{1}{x^{3/5}} & \quad \text{---Select---} \\
\frac{1}{\ln(x)} & \quad \text{---Select---} \\
\frac{1}{3^x} & \quad \text{---Select---} \\
\frac{1}{x^5} & \quad \text{---Select---}
\end{align*}
\]