| Question | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Instructions
Read today's [Notes and Learning Goals](#)
A model rocket is launched straight upward. During the first four seconds of powered flight, its height is given by

\[h(t) = 16.1t^2 - 1.75t^3 \quad 0 \leq t \leq 4 \]

with \(t \) in seconds and \(h \) in feet. Answer the following questions. Round all answers to two decimal places. Include correct units.

a. How high is the rocket when \(t = 3 \) seconds?

 []

b. What is the velocity of the rocket when \(t = 2 \) seconds?

 []

c. What is the acceleration of the rocket when \(t = 1 \) second?

 Acceleration is the rate of change of velocity.

 []

d. Find a time during the powered flight, but not \(t = 0 \), when the acceleration is zero.

 []

e. How high is the rocket at the instant it is accelerating at 10 ft/s\(^2\)?

 []

f. When the rocket is moving at 35 ft/s, how fast is its velocity changing?

 []
The height of a moving object is given by \(h(t) = 3.0 + 2.7 \sin(1.3t + 0.9) \) where \(t \) is measured in seconds and \(h \) is measured in feet. Answer the following questions. Round all answers to three decimal places. Include correct units.

a. Find the velocity of the object at the instant when \(t = 4 \) seconds.

b. Find the first instant after \(t = 0 \) when the velocity is 0.

c. Find the next instant in time when the velocity is 0.

d. Find the acceleration at the first instant \(t > 0 \) the height is 4 feet.

The height of an object is given by \(h(t) = 3 + 2 \cos(kt) \) where \(t \) is measured in seconds, \(h \) is measured in feet, and \(k > 0 \) is an unknown constant. If the acceleration of this object at \(t = 0 \) is \(-5.5 \text{ ft/s}^2\), find the velocity of this object at \(t = 1.5 \) seconds. Round answer to two decimal places and include correct units.
A projectile is launched straight upward. Its height, \(h \), in feet, is a function of time, \(t \), in seconds. Its velocity is

\[
\frac{dh}{dt} = 100 - 32t \text{ ft/sec.}
\]

a. Write a formula for all possible height functions by guessing an antiderivative of the above formula. Include +C for an unknown constant.

\[h(t) = \]

b. You know that the height at time \(t = 2 \) seconds is 160 feet. Use this to find the value of the unknown constant \(C \).

\[C = \]

c. Find a formula for \(h(t) \).

\[h(t) = \]
The current in a circuit, \(i \), is a function of time, \(t \), with \(i \) in amperes and \(t \) in seconds.
The rate of change of current is
\[
\frac{di}{dt} = 210\sin(17.5t) \text{ amps/sec.}
\]
The initial value for current is \(i(0) = 0 \).

a. Find the formula for the rate of change of the rate of change of the current.
\[
\frac{d^2i}{dt^2} = \ldots
\]

b. Find the formula for \(i(t) \) in two steps.
 I. Find a formula for all possible current functions by guessing an antiderivative. Include +C for an unknown constant.
 \[
i(t) = \ldots
\]
 II. Use the initial condition, \(i(0) = 0 \), to find the unknown constant and give the formula for \(i(t) \).
 \[
i(t) = \ldots
\]

c. What is the current when \(t = 0.5 \) seconds? Be accurate to two decimal places.
\[
\ldots
\]
d. Find the first time after \(t = 0 \) when the current is zero again. Be accurate to three decimal places.
\[
\ldots
\]
e. How fast is \(\frac{di}{dt} \) changing at the instant \(t = 0.5 \) seconds? Be accurate to the nearest whole number.
\[
\ldots
\]
A falling object has acceleration given by

\[a(t) = -9.8e^{-0.2t} \text{ m/s}^2, \text{ and} \]

Its initial velocity is

\[v(0) = 0 \text{ m/s}. \]

Its initial height is

\[h(0) = 3000 \text{ m}. \]

a. Find the velocity function.

\[v(t) = \]

b. Find the height function.

\[h(t) = \]
A object is heating up. Its temperature, T, is a function of time, t, with T in kelvin and t in minutes. Suppose you know that:

$$\frac{d^2T}{dt^2} = -1.17e^{-0.15t} \text{ K/min}^2,$$

$$\left.\frac{dT}{dt}\right|_{t=0} = 7.80 \text{ K/min}, \text{ and}$$

$$T(0) = 298 \text{ K}.$$

a. Find a formula for $\frac{dT}{dt}$.

$$\frac{dT}{dt} =$$

b. What is the temperature of the object at the instant $t = 20$ min? Be accurate to two decimal places.

$$=$$

c. When does the temperature reach 345 K? Be accurate to two decimal places.

$$=$$
8. Question Details

A model rocket is launched straight upward. During the first four seconds of powered flight its height is given by

\[h(t) = 16.1t^2 - 1.75t^3 \quad 0 \leq t \leq 4 \]

with \(t \) in seconds and \(h \) in feet. Answer the following questions. All questions are high stakes with only one submission allowed.

a. During the powered flight, is the velocity ever negative?

 - No
 - Yes

b. During the powered flight, is the velocity ever decreasing?

 - No
 - Yes

9. Question Details

A model rocket is launched straight upward. During the first four seconds of powered flight its height is given by

\[h(t) = 16.1t^2 - 1.75t^3 \quad 0 \leq t \leq 4 \]

with \(t \) in seconds and \(h \) in feet. At the instant when \(t = 4 \) seconds, the fuel cuts off. From that point in time onward, the rocket has constant acceleration of -32.2 ft/s\(^2\). When does it hit the ground? Be accurate to three decimal places.

Assignment Details

Name (AID): Higher Order Derivatives: Applications (10862449)
Submissions Allowed: 100
Feedback Settings
Before due date