The graphs below show two functions. One is \(f(x) = \cos(kx + b) \). The other is \(f'(x) \). Find \(k \).
2. Question Details

The table below gives the height of a rocket as a function time, \(h(t) \). Units are in the table.

<table>
<thead>
<tr>
<th>(t) (s)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h) (m)</td>
<td>66</td>
<td>164</td>
<td>295</td>
<td>457</td>
<td>651</td>
<td>878</td>
<td>1138</td>
<td>1429</td>
<td>1753</td>
<td>2108</td>
<td></td>
</tr>
</tbody>
</table>

Easy question. Estimate the velocity at the instant \(t = 4 \) seconds.

Medium question. Suppose that a different rocket is launched exactly twice as fast. The height of the second rocket is given by \(h(2t) \). How fast is the second rocket moving at the instant \(t = 4 \) seconds. **Hint:** Graph the height of the second rocket.

Hard question. Air temperature is a function of height:

\[T(h) = 300 - \frac{h}{200} \]

with \(T \) in kelvins and \(h \) as above. There is a temperature sensor on the rocket. How fast is the temperature, as measured by this sensor, changing at the instant when \(t = 6 \) seconds?

3. Question Details

The velocity of an object is given by

\[
\frac{dh}{dt} = 19.21\sin(1.7t + 0.3) - 16.32\cos(1.7t + 0.3) \text{ cm/min}
\]

Where \(h \) is the height of the object in centimeters and \(t \) is time in minutes. The initial height, at \(t = 0 \), of this object is 25 centimeters.

a. Find the formula for the height of this object. If you use decimals in your formulas you must be accurate to two decimal digits.

\[h(t) = \]

b. Find the velocity of this object at the first instant \(t > 0 \) it reaches a height of 45 cm. Be accurate to one decimal digit.

\[\]