Math 170

Change as Area

Notes

In **Total Change** you learned to use rate of change data to estimate total change. Today’s big idea is:

Every estimate of Δf matches an area in the graph of $\frac{df}{dt}$

1. If the estimate of Δf uses only **one interval**, then the matching area is a **single rectangle**.
 - The rectangle width is the time interval.
 - The width has units.
 - The rectangle height is the rate.
 - It also has units, and it could be negative.
 - The rectangle area is (height) \times (width), which is the same as (rate) \times (time).
 - The **area has units**. Multiply the rate and time units.
 - In this context, **area can be negative**.

2. If the estimate uses several intervals, then the matching area is a collection of rectangles.
 You must have **one rectangle for each interval**.

3. Estimates of Δf could be bigger than, smaller than, or equal to the true value of Δf.
 Learn how to determine which by looking at the rectangles in a graph of $\frac{df}{dt}$.

4. Demonstrate your understanding of the relationship between an estimate of Δf and the matching area:
 - If you are given the rectangles, be able to compute the corresponding estimate.
 - If you are given an estimate, be able to locate, draw and shade the correct collection of rectangles.
 - Compute your own estimate, then draw and shade the matching rectangles.