Suppose you have an elastic rectangle. Its height is constant at 6 cm, but its width is a variable, x. At first $x = 10$ cm, but then it stretches to 10.8 cm, as shown below.

Find the change in width.

$\Delta x =$

Find the change in area.

$\Delta(6x) =$

True or false: $\Delta(6x) = 6\Delta x$

- False
- True
Suppose you have an elastic rectangle. Its width is constant at 10 cm, but its height is a variable, \(y \).
At first \(y = 6 \text{ cm} \), but then it stretches to 6.5 cm, as shown below.

Find the change in height.
\[\Delta y = \text{ cm} \]

Find the change in area.
\[\Delta (10y) = \text{ cm}^2 \]

True or false: \(\Delta (10y) = 10 \Delta y \)
- False
- True
Suppose you have an elastic rectangle. Width, \(x \), and height, \(y \), are both variable. At first the rectangle is 6 cm by 10 cm, but then both sides stretch to 6.5 cm by 10.8 cm.

Find the change in area. Round to the nearest whole number.

\[\Delta(xy) = \] ___________

Compute

\[\Delta x \cdot \Delta y = \] ___________

True or false: \(\Delta(xy) = \Delta x \cdot \Delta y \)

- False
- True

Compute and round to the nearest whole number:

\[\Delta x \cdot (6 \text{ cm}) + (10 \text{ cm}) \cdot \Delta y = \] ___________

True or false: Rounded to the nearest whole number, \(\Delta(xy) = \Delta x \cdot (6 \text{ cm}) + (10 \text{ cm}) \cdot \Delta y \)

- False
- True
Suppose you have two functions:
\[f(x) = x^2, \text{ and} \]
\[g(x) = \sin x \]

Also, there is a third function formed by multiplying both of these:
\[h(x) = x^2 \sin x \]

Answer the following questions. All answers must be accurate to at least two decimal places. Be careful with roundoff error.

Compute the rate of change of \(f \) on \([1,1.001]\).
\[\frac{\Delta f}{\Delta x} = \quad \text{[answer]} \]

Compute the rate of change of \(g \) on \([1,1.001]\).
\[\frac{\Delta g}{\Delta x} = \quad \text{[answer]} \]

Compute the rate of change of \(h \) on \([1,1.001]\).
\[\frac{\Delta h}{\Delta x} = \quad \text{[answer]} \]

Compute
\[\frac{\Delta f}{\Delta x} \cdot \frac{\Delta g}{\Delta x} = \quad \text{[answer]} \]

True or false: \[\frac{\Delta h}{\Delta x} = \frac{\Delta f}{\Delta x} \cdot \frac{\Delta g}{\Delta x} \]
- False
- True

Compute
\[\frac{\Delta f}{\Delta x} \cdot g(1) + f(1) \cdot \frac{\Delta g}{\Delta x} = \quad \text{[answer]} \]

True or false, rounded to two decimal places: \[\frac{\Delta h}{\Delta x} = \frac{\Delta f}{\Delta x} \cdot g(1) + f(1) \cdot \frac{\Delta g}{\Delta x} \]
- False
- True
Suppose you have two functions:

- \(F(t) \) measures force applied to a lever. The units are Newtons. (WebAssign abbreviation \(N \).)
- \(L(t) \) measures the distance from the fulcrum to the force application point. The units are meters.
- \(t \) is measured in seconds.

Also, there is a third function formed by multiplying both of these. It’s called \textbf{torque}.

\[
T = F \cdot L
\]

What are the correct units for \(T \) ?
- \(\text{N} \)
- \(\text{m} \)
- \(\text{N} \cdot \text{m} \)
- \(\text{N} / \text{m} \)
- \(\text{N} / \text{sec} \)
- \(\text{m} / \text{sec} \)
- \(\text{N} \cdot \text{m} / \text{sec} \)
- \(\text{N} \cdot \text{m} / \text{sec}^2 \)

What are the correct units for \(\frac{dT}{dt} \)?
- \(\text{N} \)
- \(\text{m} \)
- \(\text{N} \cdot \text{m} \)
- \(\text{N} / \text{m} \)
- \(\text{N} / \text{sec} \)
- \(\text{m} / \text{sec} \)
- \(\text{N} \cdot \text{m} / \text{sec} \)
- \(\text{N} \cdot \text{m} / \text{sec}^2 \)

What are the correct units for \(\frac{dL}{dt} \)?
- \(\text{N} \)
- \(\text{m} \)
- \(\text{N} \cdot \text{m} \)
- \(\text{N} / \text{m} \)
- \(\text{N} / \text{sec} \)
- \(\text{m} / \text{sec} \)
- \(\text{N} \cdot \text{m} / \text{sec} \)
- \(\text{N} \cdot \text{m} / \text{sec}^2 \)

What are the correct units for \(\frac{d}{dt}(F \cdot L) \)?
- \(\text{N} \)
- \(\text{m} \)
- \(\text{N} \cdot \text{m} \)
- \(\text{N} / \text{m} \)
- \(\text{N} / \text{sec} \)
- \(\text{m} / \text{sec} \)
- \(\text{N} \cdot \text{m} / \text{sec} \)
- \(\text{N} \cdot \text{m} / \text{sec}^2 \)

What are the correct units for \(\frac{dF}{dt} \cdot \frac{dL}{dt} \)?
- \(\text{N} \)
- \(\text{m} \)
- \(\text{N} \cdot \text{m} \)
- \(\text{N} / \text{m} \)
- \(\text{N} / \text{sec} \)
- \(\text{m} / \text{sec} \)
- \(\text{N} \cdot \text{m} / \text{sec} \)
- \(\text{N} \cdot \text{m} / \text{sec}^2 \)

What are the correct units for \(\frac{dF \cdot L}{dt} + F \cdot \frac{dL}{dt} \)?
- \(\text{N} \)
- \(\text{m} \)
- \(\text{N} \cdot \text{m} \)
- \(\text{N} / \text{m} \)
- \(\text{N} / \text{sec} \)
- \(\text{m} / \text{sec} \)
- \(\text{N} \cdot \text{m} / \text{sec} \)
- \(\text{N} \cdot \text{m} / \text{sec}^2 \)

Based on units alone, which of the following could possibly be true? Select all that apply.

- \(\frac{d}{dt}(F \cdot L) = \frac{dF}{dt} \cdot \frac{dL}{dt} \)
- \(\frac{d}{dt}(T) = \frac{dF}{dt} \cdot L + F \cdot \frac{dL}{dt} \)
- \(\frac{d}{dt}(T) = \frac{dF}{dt} \cdot \frac{dL}{dt} \)
- \(\frac{d}{dt}(F \cdot L) = \frac{dF}{dt} \cdot L + F \cdot \frac{dL}{dt} \)

6. Question Details

Use the Product Rule to calculate the derivative.

\[
f(x) = x^3(7x^2 + 5)
\]

\[
f'(x) =
\]
7. Question Details
Calculate the following derivative.
\[\frac{d}{dx}(x \cos(5 - 2x)) = \]

8. Question Details
Use the Product Rule to calculate the derivative.
\[f(x) = (x + 3)^2e^{(x + 3)} \]
\[f'(x) = \]

9. Question Details
Find the derivative of \(f(x) = 3x^2 \sin x + 4x \cos x \).
\[f'(x) = \]

10. Question Details
Compute the derivative of \(k(\theta) = \theta^2 \sin^2 \theta \).
\[k'(\theta) = \]

11. Question Details
Calculate the following derivative. (Assume \(a \) and \(b \) are constants.)
\[\frac{d}{dx}((ax + b)(abx^4 + 7)) \]
\[f'(x) = \]

12. Question Details
The current in a circuit is given by
\[i(t) = te^{-2.6t} \]
where \(i \) is in amperes (A) and \(t \) is in seconds. How fast is current changing at the instant when \(t = 0.5 \) seconds? Be accurate to four decimal places and include correct units.

Assignment Details