1. (15 pts.) Find the exact intervals on which \(f(x) = x^4 - x^3 - 3x^2 \) is increasing and on which \(f \) is decreasing. You do not need to draw a graph of \(f \).

2. (15 pts.) Suppose that \(g(x) = \cos 2x - x^2 \), restricted to the domain \(0 \leq x \leq \pi \). Find the exact intervals on which \(g \) is concave up and on which \(g \) is concave down. You do not need to draw a graph of \(g \).

3. (15 pts.) Find \(\lim_{x \to 0^+} \frac{\ln(e^x - 1)}{\ln x} \)

4. (15 pts.) Use differential approximation to estimate \((995)^{1/3}\).

5. (15 pts.) If \(f(4) = 5 \) and \(f'(x) = 0.5 \) on \([0, 4]\), find \(f(0) \).

6. (15 pts.) A water tank with a square end and unspecified width is shown at right. The total surface area (four sides and bottom) is 12 ft\(^2\). What is the maximum possible volume of the tank? **NOTE:** For full credit you must include a graph of the quantity you are maximizing and show work that justifies your graph.

7. (10 pts.) In the graph at right the curve is

\[
f(x) = \sin(\pi x) - x^2 - 0.25
\]

and the line is tangent to \(f \) at \(x = -1.5 \). Find the area of the triangle formed by the tangent line and the axes.