NOTE 1: Regardless of your prior experience with calculus, you must use limit methods for all derivatives on this exam.

NOTE 2: You must show all of your work and indicate units (when applicable) for full credit.

1. (15 pts) Let \(D(t) \) be the US national debt at time \(t \). The table below gives approximate values of this function by providing end of year estimates, in billions of dollars, from 1980 to 2000.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(D(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>930.2</td>
</tr>
<tr>
<td>1985</td>
<td>1945.9</td>
</tr>
<tr>
<td>1990</td>
<td>3233.3</td>
</tr>
<tr>
<td>1995</td>
<td>4974.0</td>
</tr>
<tr>
<td>2000</td>
<td>5674.2</td>
</tr>
</tbody>
</table>

(a) What was the change in \(D \) on the interval \(1985 \leq t \leq 1990 \)?

Solution:

\[
3233.3 - 1945.9 = 1287.4 \text{ billions of } \$
\]

(b) What was the rate of change of \(D \) on the interval \(1990 \leq t \leq 1995 \)?

Solution:

\[
\frac{4974 - 3233.3}{1995 - 1990} = \frac{1740.7}{5} = 348.14 \text{ billions of } \$/\text{year}
\]

(b) Guess the value of \(D'(1990) \).

Solution:

<table>
<thead>
<tr>
<th>fixed</th>
<th>free</th>
<th>(\Delta t)</th>
<th>(\Delta D)</th>
<th>(\Delta D/\Delta t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>1985</td>
<td>5</td>
<td>1287.4</td>
<td>257.48</td>
</tr>
<tr>
<td>1990</td>
<td>1995</td>
<td>-5</td>
<td>1740.7</td>
<td>348.14</td>
</tr>
</tbody>
</table>

\[
\Rightarrow D'(t) \approx \frac{348.14 + 257.48}{2} = 302.81 \text{ billions of } \$/\text{year}
\]
2.
(a) (10 pts) Using the graph of f below compute at least two secant slopes with fixed end $x = 0$. You choose the free ends.

Solution:

<table>
<thead>
<tr>
<th>fixed</th>
<th>free</th>
<th>Δt</th>
<th>ΔD</th>
<th>$\Delta D/\Delta t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>1/4</td>
<td>-1/4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1/4</td>
<td>-1/4</td>
</tr>
</tbody>
</table>

(b) (5 pts) Guess the tangent slope at $(0,0)$.

Solution: Based on part (a) it looks like the slope $\approx -1/4$.

![Graph of function](image_url)
3. (10 pts) A particle moves along a straight line with position equation \(s(t) = \sin\left(\frac{\pi}{t}\right) + 1 \) with \(t \) measured in seconds and \(s \) measured in feet. Find the average velocity for \(\frac{2}{3} \leq t \leq 2 \).

Solution:

\[
\text{average velocity on } \left[\frac{2}{3}, 2\right] = \frac{s(2) - s\left(\frac{2}{3}\right)}{2 - \frac{2}{3}}
\]

\[
= \frac{\sin\left(\frac{\pi}{2}\right) + 1 - \left(\sin\left(\frac{\pi}{2/3}\right) + 1\right)}{4/3}
\]

\[
= \frac{2}{4/3}
\]

\[
= \frac{3}{2} \text{ ft/s}
\]
4. (15 pts) Use the graph of f below to answer $(a) - (c)$.

\[\begin{array}{c}
\text{(a) Find } \lim_{x \to -2^-} f(x). \\
\text{Solution:} \quad 2
\end{array} \]

\[\begin{array}{c}
\text{(b) Find } f(-1). \\
\text{Solution:} \quad -2
\end{array} \]

\[\begin{array}{c}
\text{(c) Find } c \text{ such that } \lim_{x \to c} f(x) \text{ does not exist but } f(c) \text{ does exist.} \\
\text{Solution:} \quad 2
\end{array} \]
5. (10 pts) If a rock is thrown upward on the planet Mars with an initial velocity of 10 m/s, its height (in meters) after t seconds is given by $h(t) = 10t - 1.86t^2$. Find it’s height when it’s velocity is -8 m/s.

Solution:

$$dq = \frac{10z - 1.86z^2 - (10t - 1.86t^2)}{z - t}$$

$$= \frac{10(z - t) - 1.86(z^2 - t^2)}{z - t}$$

$$= 10 - 1.86(z + t)$$

$$\Rightarrow h'(t) = \lim_{z \to t} [10 - 1.86(z + t)] = 10 - 3.72t$$

$$10 - 3.72t = -8 \Rightarrow t = 4.8387 \text{ s}$$

$$h(4.8387) = 4.8387 \text{ m}$$
6. (15 pts) Find the equation of the tangent line to the curve \(w = g(z) = z^3 - z^2 \) at \(z = 1 \).

Solution:

\[
dq = \frac{t^3 - t^2 - (z^3 - z^2)}{t - z}
\]

\[
= \frac{t^3 - z^3 - (t^2 - z^2)}{t - z}
\]

\[
= t^2 + tz + z^2 - (t + z)
\]

\[
\Rightarrow g'(z) = \lim_{t \to z} (t^2 + tz + z^2 - (t + z)) = 3z^3 - 2z
\]

\[
\Rightarrow g'(1) = 1
\]

\[
\Rightarrow w = z - 1
\]
7. (10 pts) Find \(\frac{d}{dx} f(x) \) for \(f(x) = x - \frac{1}{\sqrt{x}} \).

Solution:

\[
dq = \frac{z - \frac{1}{\sqrt{z}} - \left(x - \frac{1}{\sqrt{x}} \right)}{z - x}
\]

\[
= \frac{z - x + \left(\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{z}} \right)}{z - x}
\]

\[
= 1 + \frac{\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{z}}}{z - x}
\]

\[
= 1 + \frac{\sqrt{z} - \sqrt{x}}{(z - x) \sqrt{x} \sqrt{z}}
\]

\[
= 1 + \frac{z - x}{(z - x) \sqrt{x} \sqrt{z} (\sqrt{z} + \sqrt{x})}
\]

\[
= 1 + \frac{1}{\sqrt{x} \sqrt{z} (\sqrt{z} + \sqrt{x})}
\]

\[
\Rightarrow \frac{d}{dx} f(x) = \lim_{z \to x} 1 + \frac{1}{\sqrt{x} \sqrt{z} (\sqrt{z} + \sqrt{x})} = 1 + \frac{2}{x \sqrt{x}}
\]
8. (10 pts) If the tangent line to \(y = f(x) \) at \((4, 3)\) passes through the point \((0, 2)\) find \(f(4) \) and \(\frac{dy}{dx}_{x=4} \).

Solution:

\[(4, 3) \text{ on the graph } \Rightarrow f(4) = 3\]

through \((4, 3)\) and \((0, 2)\) \(\Rightarrow \frac{dy}{dx}_{x=4} = m = \frac{3 - 2}{4 - 0} = \frac{1}{4}\)