• Show all your work.

• Regardless of your prior experience with calculus, you must use limit methods for all derivatives on this exam.

1. An investment grows according to the formula

 \[A(t) = 100e^{0.1t} \]

 where \(A \) is measured in dollars and \(t \) is measured in years.

 (a) (5 pts.) Find the average rate of change of \(A \) on the interval \(0.9 \leq t \leq 1 \) year.
 (b) (5 pts.) Find the average rate of change of \(A \) on the interval \(1 < t < 1.1 \) years.
 (c) (5 pts.) Guess the instantaneous rate of change of \(A \) at time \(t = 1 \) year.

\[a) \quad \frac{100e^{0.1(1)} - 100e^{0.1(0.9)}}{1 - 0.9} \approx 10.997 \text{ \$/yr.} \]

\[b) \quad \frac{100e^{0.1(1.1)} - 100e^{0.1(1)}}{1.1 - 1} \approx 11.107 \text{ \$/yr.} \]

\[c) \quad \text{Seems like} \approx 11.05 \text{ \$/yr.} \]
2. (15 pts.) If \(f(x) = \sqrt{2x-1} \), find the rate of change of \(f \) at the point \(x = 5 \).

\(f(x) - f(5) \)
\(\frac{\sqrt{2x-1} - \sqrt{2(5)-1}}{x-5} \)
\(= \frac{\sqrt{2x-1} - 3}{x-5} \cdot \frac{\sqrt{2x-1} + 3}{\sqrt{2x-1} + 3} \)
\(= \frac{2x-1 - 9}{(x-5)(\sqrt{2x-1} + 3)} \)
\(= \frac{2x - 10}{(x-5)(\sqrt{2x-1} + 3)} \)
\(= \frac{2(x-5)}{(x-5)(\sqrt{2x-1} + 3)} = \frac{2}{\sqrt{2x-1} + 3} \)

(2) tan slope: \(x \rightarrow 5 \) gives
\(\frac{2}{\sqrt{2(5)-1} + 3} = \frac{2}{5 + 3} = \frac{1}{3} \)
3. (15 pts.) Use the graph of f shown at right to answer the following questions.

(a) $\lim_{x \to 1^+} f(x) = \frac{1}{2}$
(b) $\lim_{x \to 2} f(x) = \frac{1}{2}$
(c) $\lim_{x \to 1^-} f(x) = \frac{2}{2}$
(d) $\lim_{x \to 1^+} f(x) = \frac{1}{2}$
(e) $\lim_{x \to 1^-} f(x) = \text{DNE}$

4. Use the graph of f shown at right to:

(a) (10 pts.) Compute at least two secant slopes with fixed end at $(0,0)$. You choose the free ends.
(b) (5 pts.) Guess the tangent slope at $(0,0)$.

a) I chose intervals $[0, 0.2]$ and $[-0.2, 0]$

(i) $\frac{2}{-2} = 1.5$

(ii) $\frac{2}{-2} = 1.5$

b) I guess 1.5
5. (15 pts.) Suppose that \(y = x + \frac{1}{x} \). Find the slope of the tangent line at the point \((1, 2)\).

\[\text{Secant slope:} \quad \frac{x + \frac{1}{x} - (1 + \frac{1}{1})}{x - 1} = \frac{(x + \frac{1}{x} - 2)}{(x-1)} \cdot \frac{x}{x} = \frac{x^2 + 1 - 2x}{(x-1)x} = \frac{x^2 - 2x + 1}{(x-1)x} \]

\[= \frac{(x-1)(x-1)}{(x-1)x} = \frac{x-1}{x} \]

\[\text{Tangent slope:} \quad x \to 1 \quad \text{gives} \quad \frac{1-1}{1} = 0 \]
6. (15 pts.) A moving object has position (in meters) given by \(f(t) = 30 + 10t - 2t^2 \), with \(t \) in seconds. Find its position when its velocity is 8 m/s.

(i) Tangent slope.
\[
\frac{f(z) - f(t)}{z - t} =
\]
\[
= \frac{(30 + 10z - 2z^2) - (30 + 10t - 2t^2)}{z - t}
\]
\[
= \frac{30 - 30 + 10z - 10t - 2z^2 + 2t^2}{z - t}
\]
\[
= \frac{10(z - t) - 2(z^2 - t^2)}{z - t}
\]
\[
= \frac{10(z - t) - 2(z - t)(z + t)}{z - t}
\]
\[
= 10 - 2(z + t)
\]

(ii) From slope, \(z \rightarrow t \) gives \(f'(t) = 10 - 4t \)

(iii) \(10 - 4t = 8 \Rightarrow -4t = -8 \Rightarrow t = \frac{1}{2} \) s.

(iv) Position:
\[
f(\frac{1}{2}) = 30 + 10(\frac{1}{2}) - 2(\frac{1}{2})^2
\]
\[
= 30 + 5 - .5 = 34.5 \text{ m}
\]
7. (10 pts.) You wish to install a cable running from P to Q to R as shown in the figure at right. It costs you $180 per foot for the segment from P to Q and 100 per foot for the segment from Q to R. Total cost, C, is a function of the distance x from T to Q.

Compute the average rate of change of $C(x)$ on the interval $0 \leq x \leq 50$ feet.

\[\text{Ave Cost is} \quad \frac{C(50) - C(0)}{50 - 0}. \]

\[C(0) = (150 \text{ ft}) (180 \text{ \$/ft}) + (350 \text{ ft}) (100 \text{ \$/ft}) \]

\[= \$62,000 \]

\[C(50) = \left(\sqrt{150^2 + 50^2} \text{ ft} \right) (180 \text{ \$/ft}) + (300 \text{ ft}) (100 \text{ \$/ft}) \]

\[= \$58,460 \]

\[\text{Ave Cost:} \quad \frac{58,460 - 62,000}{50 \text{ ft}} = -70.8 \text{ \$/ft} \]