• Show all your work.

• Regardless of your prior experience with calculus, you must use limit methods for all derivatives on this exam.

1. An investment grows according to the formula

\[A(t) = 100e^{0.1t} \]

where \(A \) is measured in dollars and \(t \) is measured in years.

(a) (5 pts.) Find the average rate of change of \(A \) on the interval \(0.9 \leq t \leq 1 \) year.

(b) (5 pts.) Find the average rate of change of \(A \) on the interval \(1 \leq t \leq 1.1 \) years.

(c) (5 pts.) Guess the instantaneous rate of change of \(A \) at time \(t = 1 \) year.
2. (15 pts.) If \(f(x) = \sqrt{2x - 1} \), find the rate of change of \(f \) at the point \(x = 5 \).
3. (15 pts.) Use the graph of \(f \) shown at right to answer the following questions.

(a) \(\lim_{x \to -1^+} f(x) = \) ?
(b) \(\lim_{x \to 2} f(x) = \) ?
(c) \(\lim_{x \to 1^-} f(x) = \) ?
(d) \(\lim_{x \to 1^+} f(x) = \) ?
(e) \(\lim_{x \to 1} f(x) = \) ?

4. Use the graph of \(f \) shown at right to:

(a) (10 pts.) Compute at least two secant slopes with fixed end at \((0,0)\). You choose the free ends.

(b) (5 pts.) Guess the tangent slope at \((0,0)\).
5. (15 pts.) Suppose that $y = x + \frac{1}{x}$. Find the slope of the tangent line at the point (1, 2).
6. (15 pts.) A moving object has position (in meters) given by \(f(t) = 30 + 10t - 2t^2 \), with \(t \) in seconds. Find its position when its velocity is 8 m/s.
7. (10 pts.) You wish to install a cable running from P to Q to R as shown in the figure at right. It costs you $180 per foot for the segment from P to Q and 100 per foot for the segment from Q to R. Total cost, C, is a function of the distance x from T to Q.

Compute the **average** rate of change of $C(x)$ on the interval $0 \leq x \leq 50$ feet.