Homework 2, Graded Problems.

1. A population grows exponentially. Write a formula (using a base e exponential) for the population as a function of time assuming:

 (a) There are initially 100 (whatever), and
 (b) The number doubles after 15 hours.

2. A population of foxes grows according to the function

\[p(t) = \frac{1000}{1 + e^{-0.2t}} \]

where t is measured in years.

 (a) Find a formula for the inverse of this function.
 (b) What is the input to the inverse function? (Include units.)
 (c) What is the output of the inverse function? (Include units.)

3. A ball is thrown directly upward from a 100 foot tall tower. Its height (in feet) after t seconds is given by

\[h(t) = 100 + 40t - 16t^2 \]

 (a) Compute the average velocity on the intervals
 i. [0.9, 1]
 ii. [0.99, 1]
 iii. [1, 1.1]
 iv. [1, 1.01]
 (b) Guess the velocity at time $t = 1$.

4. Compute the limit

\[\lim_{x \to 1} \frac{e^x - e^1}{x - 1} \]

Use any methods (approximate and guess, graph and zoom, whatever...) but SHOW ALL YOUR WORK!