Show all your work.

1. (9 pts. ea.) Compute y' for each of:

 (a) $y = \sin x + 2 \cos x - \tan 3x$

 (b) $y = \frac{x^2 e^{2x}}{\sec x}$

 (c) $y = \cot(csc(x^2 + 1))$
2. (9 pts. ea.) In each of the following problems, f and g are functions of x. Compute $\frac{dy}{dx}$.

(a) $y = f(xg(x) + 2)$

(b) $y = \frac{f + g}{fg}$
3. (10 pts.) For \(y = \ln x + x^2 \), find all points (\(x \)-coordinates are sufficient) where the tangent slope is 3.

4. (10 pts.) Use differentials to approximate the value of \(\sqrt[3]{1005} \).
5. (10 pts.) Suppose that a particle moves along the y-axis with position (in meters) after \(t \) seconds given by \(y(t) = 3t - e^{2t+1} \).

(a) Find all times when the particle’s velocity is 0.

(b) Find the acceleration at each of those times.
6. (10 pts.) Find all values of the constant ω for which $y = \sin \omega t + 2 \cos \omega t$ would solve the differential equation $y'' + 4y = 0$.
7. (15 pts.) An airplane flying at a constant altitude of 30000 feet passes over a radar station on the ground. When the angle θ (as shown at right) is 30°, it is changing at -0.005 radians per second. How fast is the plane flying?