Worksheet 3

Suppose that \(S \) is the solid shape between the paraboloid \(z = x^2 + y^2 - 100 \) and the plane \(z = 0 \). Assume that the \(x- \), \(y- \) and \(z- \)axes have units of meters.

1. Write an iterated triple integral for the volume of \(S \).

2. Write out the formula for a little bit of volume, \(dV \). What are its units?

3. Suppose that \(dV \) is little bit of water. Density is 1000 kg/m\(^3\). Gravitational acceleration is \(9.81 \) m/s\(^2\). What does the little bit of water weigh? Give units.

 HINTS:

 • Weight = Mass \(\times \) Gravitational Acceleration

 • Mass = Density \(\times \) Volume

4. Suppose you lift the little bit of water up to height \(z = 0 \). How much work did you do? Give units.

 HINT: Work = Weight \(\times \) Distance

5. Suppose you lift ALL the water up to height \(z = 0 \). How much work did you do? Give units.

6. Suppose that you want to dig a hole in the shape of \(S \). If the density of the soil you excavate is \(\rho \) kg/m\(^3\), how much work does it take to dig the hole?

7. Suppose that you are digging up ore that is worth more as you dig deeper: at \(h \) meters below ground the ore is worth \(2\sqrt{h} \) \$/m\(^3\). What is the total value of the ore excavated from \(S \).