Homework 2, Graded Problems.

1. Find the equation of the plane through $(1, 4, -2)$ and perpendicular to the line
 \[
 \langle 2, 0, 2 \rangle + t\langle -1, 3, 5 \rangle \]

2. Find the line of intersection between the planes
 \[
 2x - 3y + z = 9 \quad \text{and} \quad x + 3y - 4z = 0
 \]
 Write your answer in parametric form.

3. Find a so that the lines
 \[
 \langle a, 0, 0 \rangle + t\langle 1, 2, -1 \rangle \quad \text{and} \quad \langle 1, 2, 3 \rangle + s\langle 0, 1, -1 \rangle
 \]
 meet in exactly one point. Also find that point.

4. For the parametric curve
 \[
 \mathbf{r}(t) = \cos \frac{\pi(t - 1)}{2} \mathbf{i} + \left(1 + \sin \frac{\pi(t - 1)}{2}\right) \mathbf{j} + t \mathbf{k}
 \]
 (a) Sketch the portion of the curve for $0 \leq t \leq 2$.
 (b) Compute $\mathbf{r}'(1)$.
 (c) Include $\mathbf{r}'(1)$, based at the point $\mathbf{r}(1)$, in your sketch from part (a).