Homework 13

Suppose that $\gamma : [a, b] \to \mathbb{C}$ and $f : G \to \mathbb{C}$ are such that γ' and $f \circ \gamma$ are continuous on $[a, b]$. We will prove the existence of the Riemann integral

$$\int_{\gamma} f(z) \, dz$$

There is some notation that we will use throughout the proof. If P is a partition,

- R_P will denote any one of the possible Riemann sums

$$R_P = \sum f(\gamma(z_i^*)) \Delta z_i = \sum f(\gamma(t_i^*)) [\gamma(t_i) - \gamma(t_{i-1})]$$

where each t_i^* is arbitrarily chosen in $[t_{i-1}, t_i]$.

- P' will denote a partition obtained from P by inserting one more point. That is, $P' = P \cup \{t'\}$ where t' is distinct from all other t_n in P.

Lemma. (Proved in class) $\forall \epsilon > 0, \exists \delta > 0$ so that $||P|| < \delta \implies |R_{P'} - R_P| < \epsilon$.

Exercise 1. Prove that $\forall \epsilon > 0, \exists \delta > 0$ so that $||P|| < \delta \implies |R_Q - R_P| < \epsilon$ for all Q with $P \subset Q$.

Exercise 2. Prove that $\forall \epsilon > 0, \exists \delta > 0$ so that $||P|| < \delta$ and $||Q|| < \delta$ $\implies |R_Q - R_P| < \epsilon$.

Exercise 3. Prove that there exists a sequence $\{\delta_n\}$ so that for all n

1. $\delta_{n+1} < \delta_n$, and
2. $||P||, ||Q|| < \delta_n \implies |R_P - R_Q| < 1/n$

Exercise 4. For each δ_n from Exercise 3, choose some P_n with $||P_n|| < \delta_n$. Prove that $\{R_{P_n}\}$ is a Cauchy sequence, and that it therefore has a limit in \mathbb{C}.

Exercise 5. Suppose $R_{P_n} \to I$. Prove that I is the Riemann integral

$$\int_{\gamma} f(z) \, dz$$

Exercise 6. Astute readers will note that $\{R_{P_n}\}$ is not uniquely defined. No problem. Suppose that some other number J is also the Riemann integral. Prove that $I = J$. 1