Homework 10

1. Suppose that

\[f(z) = \sum (-1)^n \frac{z^{2n+1}}{(2n + 1)!} \]

(a) Prove that \(f(z) \) is entire.
(b) Write \(f'(z) \) as a power series.
(c) Prove that \(f \) solves the differential equation \(y'' + y = 0 \).
(d) Prove that \(f \) solves the initial value problem \(y'' + y = 0, y(0) = 0, y'(0) = 1 \).
(e) The Fundamental Theorem of Differential Equations says that (at least in this case) there is a unique real valued solution to this IVP, and that that solution is defined on all of \(\mathbb{R} \). Find that solution (in non-series form).

NOTE: This means that, for real \(z \), \(f(z) \) is a familiar function.

2. Suppose that \(k \) is a fixed real number and that

\[g(z) = \sum \frac{(kz)^n}{n!} \]

(a) Prove that \(g(z) \) is entire.
(b) Write \(g'(z) \) as a power series.
(c) Find a differential equation for which \(g \) would be a solution.
(d) Write down an initial value problem for which \(g \) would be a solution.
(e) Use the FTDE to determine \(g(z) \) (in non-series form) for real valued \(z \).

3. Fix \(k = 1 \) and let \(g(z) \) be defined as in Problem 2. Let

\[h(z) = \sum (-1)^n \frac{z^{2n}}{(2n)!} \]

as in class. Prove that for all \(z, w \in bC \):

(a) \(g(z + w) = g(z)g(w) \).
(b) \(g(iz) = h(z) + if(z) \)
(c) \(|f(z)|^2 + |h(z)|^2 = 1 \)

Then write these conclusions using the familiar names for these functions.
4. Suppose that

\[l(z) = \sum (-1)^n(z - 1)^n \]

(a) Note that this is a geometric series and compute:

i. The radius of convergence.
ii. An exact formula for \(l(z) \).

(b) Find a power series for a function \(L(z) \) so that

i. \(L'(z) = l(z) \), and
ii. \(L(1) = 0 \).

(c) Apply FTDE once again (the IVP is \(y'(t) = 1/t, y(1) = 0 \)) to guess a familiar name for \(L(z) \) when \(z \) is positive and real.

5. Let \(L \) be defined as in Problem 4. Suppose that there is a continuous \(g \) such that \((L \circ g)(z) = z \) for all \(z \) in an open set \(G \). Prove that \(g' = g \) on the domain \(G \).

6. Fix \(k = 1 \) and let \(g(z) \) be defined as in Problem 2. Suppose that there is a continuous \(f \) for which \(|z - 1| < 1 \implies (g \circ f)(z) = z \). Prove that \(f = L \) from Problem 4.