Answers to Worksheet 3

Problem 1: Graphs omitted.

1. There is only one point:
 \[
 \left(\frac{1}{2}, \frac{1}{4} \right)
 \]
 The tangent line is
 \[
 y = \frac{1}{4}
 \]

2. There is only one point:
 \[
 \left(-\frac{1}{2}, -\frac{3}{4} \right)
 \]
 The tangent line is
 \[
 y = 2x + \frac{1}{4}
 \]

3. There are two points:
 \[
 (1 + \sqrt{2}, -2 - \sqrt{2}) \approx (2.414, -3.414)
 \]
 \[
 (1 - \sqrt{2}, -2 + \sqrt{2}) \approx (-0.414, -0.586)
 \]
 The tangent lines are
 \[
 y = (-1 - 2\sqrt{2})x + 3 + 2\sqrt{2} \approx -3.828x + 5.828
 \]
 \[
 y = (-1 + 2\sqrt{2})x + 3 - 2\sqrt{2} \approx 1.828x + 0.172
 \]

Problem 2: Graphs omitted.

1. There is only one point:
 \[
 (0, 2)
 \]
 The tangent line is
 \[
 y = 2
 \]

2. There is only one point:
 \[
 (-\sqrt{2}, \sqrt{2})
 \]
 The tangent line is
 \[
 y = x + 2\sqrt{2}
 \]
3. There are two points:

\((-\sqrt{3}, 1)\)
\((\sqrt{3}, 1)\)

The tangent lines are

\(y = \sqrt{3}x + 4\)
\(y = -\sqrt{3}x + 4\)

Problem 3: Graphs omitted.

1. There are infinitely many:

 \[
 \cdots \left(\frac{-3\pi}{2}, 1\right), \left(\frac{-\pi}{2}, -1\right), \left(\frac{\pi}{2}, 1\right), \left(\frac{3\pi}{2}, -1\right), \cdots
 \]

2. There are infinitely many:

 \[
 \cdots (-2\pi, 0), (0, 0), (2\pi, 0), (4\pi, 0), \cdots
 \]

3. There are infinitely many, but the problem only asks for one. I ended up just trying some numbers.

 (a) Look at the graph and guess an answer. I picked \(x = 4.5\) and got

 \((4.5, -0.978)\)

 \(y = -0.211x - 0.029\)

 (b) Refine your guess by trial an error. I decided this was good enough:

 \((4.369, -0.942)\)

 \(y = -0.337x + 0.529\)