Homework 10.1

This homework will not be handed in. It will be covered on Exam 2

1. For each of
 §11.1: Problems 17, 19, 21, 29, 31, 33, 35, 39, 45.

 (a) Graph a few terms of the sequence. How many depends on how easily you can answer
 the next question.

 (b) What is the limit of the sequence?

2. For each of
 §11.2: Problems 15–33 odd.
 Does the series converge? Give a brief reason for your answer.

3. For each of
 §11.3: Problems 15–23 odd.
 Is the series convergent? Give a brief reason for your answer.

4. Find a strong comparison for each convergent series in Problem 3.

5. For §11.3: Problem 15, approximate the sum as follows.

 (a) Compute \(\sum_{1}^{10} \frac{1}{n^2 + 4} \)

 (b) Use your strong comparison and an integral to bound the error:

 \[\sum_{11}^{\infty} \frac{1}{n^2 + 4} \]

 Answer:

 (a) 0.566

 (b) Depends on your strong comparison. I got error less than 0.099.

 Answer: Depends on your cutoff point and your strong comparison. However, you should have

 \[0.69174 - (\text{your answer}) < (\text{your error bound}) \]
7. Approximate the sum in §11.3: Problem 19 with an error no greater than 0.00001 as follows.
 (a) Use a strong comparison and an integral to bound the error
 \[
 \sum_{a+1}^{\infty} n e^{-n^2}
 \]
 (b) Set this to be less than 0.00001 and solve for \(a \).
 (c) Compute
 \[
 \sum_{1}^{a} n e^{-n^2}
 \]
 Answer: Depends on your comparison. I used \(x e^{-x^2} \) and got \(a = 4 \), so
 \[
 \sum_{1}^{4} n e^{-n^2} \approx 0.40488
 \]

8. Approximate the sum in §11.3: Problem 23 with error no greater than 0.02. Follow the outline in Problem 7.