Homework 5

Ungraded Problems (No graded problems this week)

1. §8.3: Problems 1(a) and (b).

2. §8.3: Problems 1(c) and 3.
 (a) Choose an axis if integration.
 (b) Compute a little bit of force. Express your answer in terms of the integration variable.
 (c) Compute the total force.

3. §8.3: Problem 5. Assume the picture is the end of a tank that extends 30 meters perpendicular to the page.
 (a) Choose an axis of integration.
 (b) Compute a little bit of force on a slice of the semicircular end of the tank.
 (c) Compute the total force on the end of the tank.

4. §8.3: Problem 5. Assume the picture is the end of a tank that extends 30 meters perpendicular to the page.
 (a) Choose an axis of integration.
 (b) Compute a little bit of force on a slice of the curved wall of the tank.
 (c) Compute the total force on the curved wall of the tank.

 Answer: Exactly $3000\rho g$. Approximately 2.94×10^7 N.

5. §6.3: Problem 15(c) and (d). Be sure to do all the usual steps.

6. §6.3: Problem 33. Assume that the axes have units of meters and that $\rho = 1 \text{ kg/m}^2$.
 NOTE: you could do this problem with formulas from the book, but that will not help you learn how to do the rest of the assignment. I suggest the following outline:

 For M_x:

 (a) Chose an axis of integration.
 (b) Draw a typical slice of the shape.
 (c) Compute the moment of that slice (about the x-axis).
 (d) Compute the total moment.
For the y-coordinate of center of mass:

(a) Sketch a balance axis at some height, say $y = b$.
(b) Chose an axis of integration.
(c) Draw a typical slice of the shape.
(d) Compute the moment of that slice about the balance axis.
(e) Compute the total moment.
(f) Set this equal to zero and solve for b.

Answers: $M_x = 4/3g \approx 13.08 \text{ N\cdot m}$.
$M_y = 0 \text{ N\cdot m}$.
Center of Mass: $(0, 2/3)$.

7. §6.3: Problem 33. Axes are in meters and density is variable: $\rho = (y + 1) \text{ kg/m}^2$. Follow the outline above.

Answers: $M_x = 8/3g \approx 26.16 \text{ N\cdot m}$.
$M_y = 0 \text{ N\cdot m}$.
Center of Mass: $(0, 4/5)$.

8. Problem 29. Axes are in inches and density is 0.02 lbs/in2. Find M_x, M_y and Center of Mass. Follow the usual outline, but leave answers in integral form if you like.

Answers:

Along x-axis, $M_x = \int_0^{\pi/4} 0.02(\cos x - \sin x) \frac{\cos x + \sin x}{2} \, dx = 0.005 \text{ in\cdot lbs.}$

Along y-axis, $M_x = \int_0^{1/\sqrt{2}} y \sin^{-1} y \, dy + \int_{1/\sqrt{2}}^{1} y \cos^{-1} y \, dy$

$M_y = \int_0^{\pi/4} 0.02(\cos x - \sin x)x \, dx \approx 0.00221 \text{ in\cdot lbs.}$

Center of Mass : \(\left(\frac{M_y}{\sqrt{2} - 1}, \frac{M_x}{\sqrt{2} - 1} \right) \)

9. Problem 29. Axes are in inches and density is $(0.01 + x) \text{ lbs/in}^2$. Find M_x, M_y and Center of Mass. Leave answers as integrals if you wish.