Hw 7 Solutions

Proposition 4.4(a): Every angle has a unique bisector.

Note: You do not have a definition of angle bisector. The proof below conveys what I think is a working definition. Yours should do so as well.

Proof: Given $\angle ABC$.

Find C' on AC so that $AB \cong AC'$.

Let D be the midpoint of AC'.

Be definition of midpoint, $AD \cong DC'$.

By construction, $BA \cong BC'$.

$BD \cong BD$.

By SSS, $\triangle DBA \cong \triangle DBC'$.

We now have \overrightarrow{BD} inside $\angle ABC$ and $\angle ABD \cong \angle CBD$.

Therefore \overrightarrow{BD} bisects $\angle ABC$.

Now suppose that \overrightarrow{BE} also bisects $\angle ABC$.

\overrightarrow{BE} is inside $\angle ABC$.

$\therefore \overrightarrow{BE}$ meets AC' in a point E'.

$BA \cong BC'$.

$\angle EBA \cong \angle EBC'$ by definition of bisector.

$BE \cong BE$.

By SAS, $\triangle EBA \cong \triangle EBC'$.

$\therefore AE \cong EC'$.

This makes E a midpoint of AC.

By uniqueness of midpoints, $E = D$ ■
Proposition 4.4(b): Every segment has a unique perpendicular bisector.

Note: As above, you will have to convey an appropriate definition of perpendicular bisector.

Proof: A segment AB has a unique midpoint M.
There is a line l through M with $l \perp AB$.
Therefore l is a perpendicular bisector of AB.
Let k be another perpendicular bisector of AB.
By definition of bisector, k meets AB at M.
k forms a right angle on each side of AB with vertex M.
So does l.
All right angles are congruent, so
by uniqueness of angle construction (Axiom C4), $l = k$ ■

Proposition 4.11: Hilbert’s parallel postulate implies the angle sum of any triangle is $(180)^\circ$.

Proof: Given $\triangle ABC$.
Find D so that $\angle DBA \cong \angle A$
with D and C on opposite sides of AB.
\overrightarrow{BA} is inside $\angle DBC$.
:. $(\angle DBA)^\circ + (\angle ABC)^\circ = (\angle DBC)^\circ$.
It follows that $(\angle A)^\circ + (\angle ABC)^\circ = (\angle DBC)^\circ$.
Now find E so that $\angle EBC \cong \angle C$
with E and D on opposite sides of BC.
By congruence of alternate interior angles,
$\overrightarrow{DB} \parallel \overrightarrow{AC}$ and $\overrightarrow{EB} \parallel \overrightarrow{AC}$.
Hilbert’s postulate says $\overrightarrow{DB}=\overrightarrow{EB}$.
Since D and E are on opposite sides of BC,
$\angle DBC$ and $\angle EBC$ are supplementary.
:. $(\angle DBC)^\circ + (\angle EBC)^\circ = (180)^\circ$.
By substitution, $(\angle A)^\circ + (\angle ABC)^\circ + (\angle C)^\circ = (180)^\circ$ ■