Hw 11 Solutions

Exercise 2. Suppose that lines l and l' have a common perpendicular segment MM'.
Let A and B be points on l such that M is not the midpoint of segment AB. Prove that A and B are not equidistant from l'.

Proof: Suppose that they are equidistant from l'.
Drop $AA' \perp l'$ and $BB' \perp l'$.
$\Box A'B'B'A$ is a Saccheri quadrilateral.
Let PP' be the segment joining the midpoints of AB and $A'B'$.
By Lemma 6.2, $PP' \perp l$ and $PP' \perp l'$.
But MM' is the only such segment.
$\therefore M = P$.
However, M is not the midpoint of AB.

Exercise 4. Given the figure at right. Prove that $AA' < BB'$.

Proof: $\Box M'A'AM$ is a Lambert quadrilateral.
It cannot be a rectangle, so $\angle MAA' < 90$.
The supplementary angle is $\angle BAA'$.
$\therefore \angle BAA'$ is obtuse.
$\Box M'B'B'M$ is a Lambert quadrilateral.
$\therefore \angle MBB' < 90$.
We now have $\angle BAA' > \angle ABB'$.
$\therefore BB' > AA'$.